Options de recherche
Page d’accueil Médias Notes explicatives Recherche et publications Statistiques Politique monétaire L’euro Paiements et marchés Carrières
Suggestions
Trier par
Pas disponible en français

Alessandro Lin

21 February 2024
WORKING PAPER SERIES - No. 2911
Details
Abstract
We propose a novel methodology for solving Heterogeneous Agents New Keynesian (HANK) models with aggregate uncertainty and the Zero Lower Bound (ZLB) on nominal interest rates. Our efficient solution strategy combines the sequence-state Jacobian methodology in Auclert et al. (2021) with a tractable structure for aggregate uncertainty by means of a two-regimes shock structure. We apply the method to a simple HANK model to show that: 1) in the presence of aggregate non-linearities such as the ZLB, a dichotomy emerges between the aggregate impulse responses under aggregate uncertainty against the deterministic case; 2) aggregate uncertainty amplifies downturns at the ZLB, and household heterogeneity increases the strength of this amplification; 3) the effects of forward guidance are stronger when there is aggregate uncertainty.
JEL Code
D14 : Microeconomics→Household Behavior and Family Economics→Household Saving; Personal Finance
E44 : Macroeconomics and Monetary Economics→Money and Interest Rates→Financial Markets and the Macroeconomy
E52 : Macroeconomics and Monetary Economics→Monetary Policy, Central Banking, and the Supply of Money and Credit→Monetary Policy
E58 : Macroeconomics and Monetary Economics→Monetary Policy, Central Banking, and the Supply of Money and Credit→Central Banks and Their Policies

Notre site Internet utilise des cookies

Nous utilisons des cookies fonctionnels pour conserver les préférences des utilisateurs, des cookies analytiques pour améliorer les performances du site Internet et des cookies tiers définis par des services tiers intégrés au site. Vous pouvez les accepter ou les refuser. Pour de plus amples informations ou pour explorer vos préférences en matière de cookies et de logs, nous vous invitons à :