Monetary policy shocks, structural transformation and production networks: a multi-country analysis

Alberto Palazzolo ECARES, ULB

ChaMP WS2 online workshop - December 9, 2025

This project

What is the role of production networks in the impact of monetary policy shocks?

- What is the impact on firm outcomes?
- How does the impact vary with their network position?
- How do monetary policy shocks propagate and generate aggregate outcomes (output, inflation)?

How does the network differ across countries?

• Contributors: Belgium, Estonia, Hungary, Italy, Portugal

Implications for policy

- Networks might amplify or attenuate propagation of monetary policy shocks
- Different network structures can imply different aggregate results

State of the project

The project is structured along 5 dimensions:

1. Descriptive statistics

number of firms and links across years

2. Firm heterogeneity and networks

 correlations between network stats and firm size, firm size decomposition as in Bernard et al. (2022)

3. **Granularity**

• Concentration: share of total B2B sales by firms and links

4. Within-sector heterogeneity

coefficients of variation across firm pairs within each sector pair

5. Monetary policy

 with IRFs estimated on Belgium, how much of the total effect can be attributed to upstream firms?

Application to Belgian data

What we do

Methodology

- ECB monetary policy shocks (Jarocinski & Karadi, 2020).
- Impact on firm sales and prices.
- Local projections (Jorda, 2005; Barnichon & Brownlees, 2019).

Heterogeneity

- Across firms: network upstream/downstream position.
- Across sectors: variation in economic activity and exposure.
- (Next) Across countries: structural differences in specialization patterns and/or network structure?

Data sources: Unbalanced panel (2002-2022)

Monetary policy

• Unexpected ECB monetary policy shocks (Jarocinski & Karadi, 2020).

Firm outcomes

- VAT declarations (NBB): revenues for all firms, quarterly.
- Micro Producer Price Index (Statbel): firm-product-level prices, monthly.
- Sector GDP deflators (NBB): services deflators (NACE 2-digit), quarterly.
- Sectoral frequency of price adjustment, quarterly

Production network

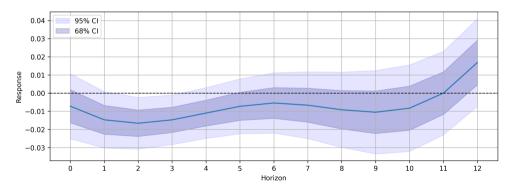
VAT listings (Dhyne, Duprez and Komatsu, 2023): sales firm-to-firm within Belgium, yearly.

Firm-level responses

Estimation: Impulse Response Functions

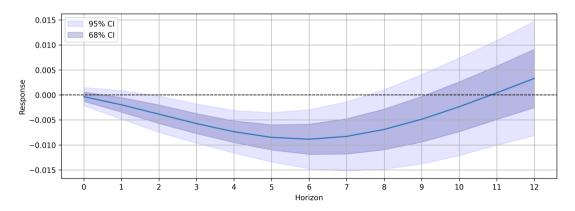
Smoothed local projections (Jorda, 2005; Barnichon & Brownlees, 2019)

The impact of a shock at time t at horizon $h = 1, \dots, H$ on outcome Y for firm i is:


$$\begin{split} \Delta^h \log Y_{i,t+h} &= \log Y_{i,t+h} - \log Y_{i,t-1} \\ &= \beta_h \operatorname{MP}_t + \gamma_h X_{i,t} + \alpha_i + \epsilon_{i,t+h} \end{split}$$

where

- Outcome $Y_{i,t+h}$: real sales or prices of firm (or firm-product) i at horizon h.
- MP_t: monetary policy shock at time t.
- Controls $X_{i,t}$, including 4 lags of $\Delta \log Y_i$ and MP_t , sectoral frequency of price changes at t.
- Fixed effects α_i : firm or firm-product.
- Driscoll-Kraay SEs $\epsilon_{i,t+h}$: robust (heterosc. and auto-correlation).


Real sales

- 1 std increase in mon pol shock (+/- 5bp tightening) decreases sales by around 1-2%.
- Largest effect at around 2 quarters.
- Most effect within 6 quarters but decays up to 3 years.

Prices

- 1 std increase in monetary policy shock decreases prices by 0.5-1%.
- Slower impact than sales (max at around 6 quarters).
- Most effect within 3 years.

Firm-level network position

Upstreamness: from final demand to upstream firms

Intuition

- Firm's average distance from final demand in the production network.
- Upstreamness = 1 for firms selling only to final demand.
- High upstreamness: firm mostly sells to other producers rather than final demand.

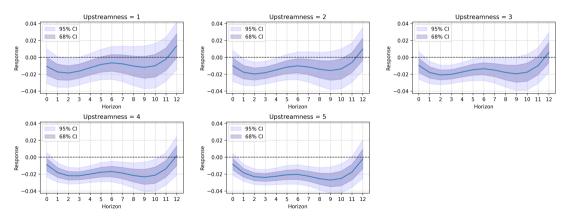
Definition (Antras & Chor, 2012; Fally, 2011)

$$U_i = 1 + \sum_j b_{ij} U_j \quad \Rightarrow \quad \mathbf{U} = (\mathbf{I} - \mathbf{B})^{-1} \mathbf{1}$$

- $B = [b_{ij}]$: revenue-share matrix (downstream to upstream).
- $b_{ij} = \frac{p_i x_{ij}}{p_i y_i}$: share of firm *i*'s output sold to *j*.

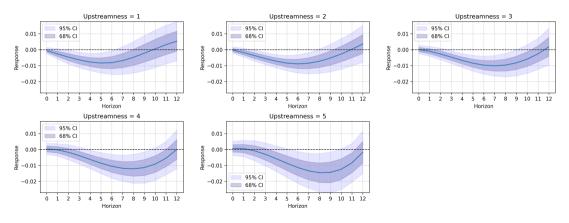
Estimation: Interaction with network position

We estimate:


$$\Delta^h \log Y_{i,t+h} = \alpha_i + \beta_h \operatorname{MP}_t + \lambda_h \operatorname{Up}_{i,y(t)-1} + \delta_h (\operatorname{MP}_t \times \operatorname{Up}_{i,y(t)-1}) + \gamma_h X_{i,t} + \epsilon_{i,t+h}$$

where

- $Up_{i,y(t)-1}$: at the annual level and fixed in year y(t).
- Total effect: $\beta_h + \delta_h \times \mathsf{Up}_{i,y(t)-1}$.


Real sales - upstreamness

• The effect on upstream firms is larger, maxes out later, and is more persistent (up to 3 years).

Prices - upstreamness

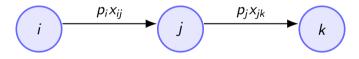
• Downstream firms react first, upstream with some delay.

Direct and indirect effects

The transmission of shocks through the network

Question: How do monetary policy shocks propagate across firms linked by input-output relationships?

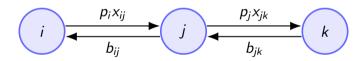
- Firms are embedded in production networks, where outputs of some firms are inputs for others.
- Shocks do not remain localized: they transmit across the network via input demand and input costs.
- The structure of the network determines which firms are more exposed to shocks.


Key mechanisms:

- Backward propagation via revenue-based linkages
- Forward propagation via cost-based linkages

Revenue-Based propagation

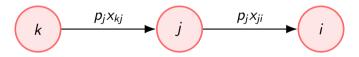
Key idea: Shocks to downstream firms propagate upstream through input demand.


- A monetary contraction decreases final demand ⇒ contracts sales of final-good firms.
- These firms decrease demand for intermediate goods.
- Upstream suppliers are also affected via backward propagation.

Revenue-Based propagation

Key idea: Shocks to downstream firms propagate upstream through input demand.

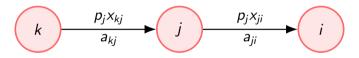
- A monetary contraction decreases final demand ⇒ contracts sales of final-good firms.
- These firms decrease demand for intermediate goods.
- Upstream suppliers are also affected via backward propagation.



- $b_{ij} = \frac{p_i x_{ij}}{p_i y_i}$: share of firm *i*'s output sold to *j*.
- Exposure to j: b_{ij}
- Exposure to k: $b_{ij}b_{jk}$
- All-paths (direct + indirect) exposure: $(\mathbf{I} \mathbf{B})^{-1}\mathbf{1}$

Cost-Based propagation

Key idea: Shocks to upstream firms propagate downstream via input costs.


- A monetary contraction raises input costs via interest rates or credit constraints
- Upstream firms pass cost increases to downstream customers
- Downstream firms are affected due to forward propagation

Cost-Based propagation

Key idea: Shocks to upstream firms propagate downstream via input costs.

- A monetary contraction raises input costs via interest rates or credit constraints
- Upstream firms pass cost increases to downstream customers
- Downstream firms are affected due to forward propagation

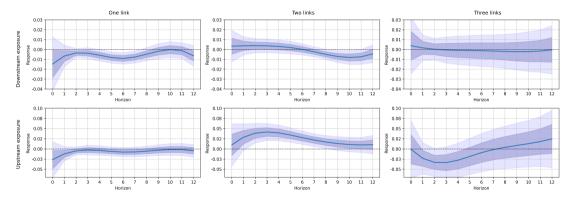
- $a_{ji} = \frac{p_j x_{ji}}{p_i y_i}$: share of firm j's output in the production of i.
- Exposure to *j*: a_{ji}
- Exposure to k: $a_{kj}a_{ji}$
- All-paths (direct + indirect) exposure: $\mathbf{1}'(\mathbf{I} \mathbf{A})^{-1}$

Capturing indirect effects through the production network

We estimate:

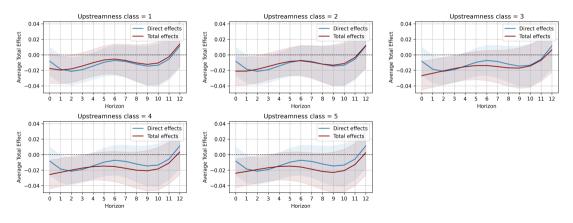
$$\begin{split} \Delta^k \log Y_{i,t+h} = & \beta_h \operatorname{MP}_t + \rho_h^1 \sum_j b_{ij} \operatorname{MP}_t + \rho_h^2 \sum_k \sum_j b_{ij} b_{jk} \operatorname{MP}_t + \ldots + \\ \theta_h^1 \sum_j a_{ji} \operatorname{MP}_t + \theta_h^2 \sum_k \sum_j a_{kj} a_{ji} \operatorname{MP}_t + \ldots + \alpha_i + \gamma_h X_{i,t} + \epsilon_{i,t+h} \end{split}$$

or, in matrix notation:

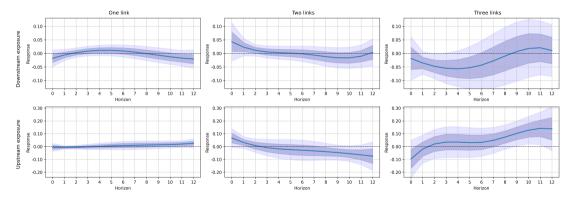

$$\begin{split} \mathbf{\Delta^k} \log \mathbf{Y_{t+h}} = & \beta_h \, \mathbf{MP_t} + \rho_h^1 \, \mathbf{B} \, \mathbf{MP_t} + \rho_h^2 \, \mathbf{B^2} \, \mathbf{MP_t} + ... + \\ & \theta_h^1 \, \mathbf{MP_t} \, \mathbf{A} + \theta_h^2 \, \mathbf{MP_t} \, \mathbf{A^2} + ... + \alpha + \gamma_h' \mathbf{X_t} + \epsilon_{t+h} \end{split}$$

Total effect by firm-horizon is:

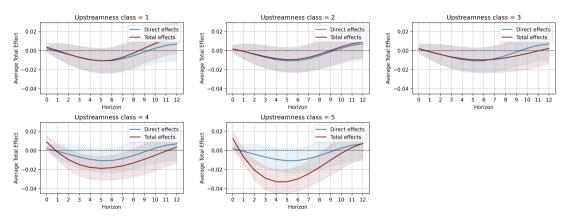
$$TE_{i,h} = \beta_h + \sum_{k}^{K} \rho_h^k \mathbf{B}^k + \sum_{k}^{K} \theta_h^k \mathbf{A}^k$$


Sales: indirect effects at various distances

• Significant effects downstream, become insignificant after 2 links


Sales: total vs direct average effects

• Total effects larger for upstream firms, indirect effects dominating after 4 quarters


Prices: indirect effects at various distances

• No significant indirect effects on prices

Prices: total vs direct average effects

• Total effects are larger for upstream firms: demand effect

Conclusion

Monetary tightening is consistent with intuition

- Reducing output and prices across the board.
- Price effect takes longer to max out.
- Larger effects in Utilities and Services.

Network position matters for policy response

- More upstream firms react stronger and more persistent in sales.
- Downstream firms react first, upstream with some delay.

Indirect effects play a big role in the transmission of monetary policy

- Backward propagation through sales causes larger effects for upstream firms
- The effects on prices are demand-driven: no forward propagation of costs

Appendix

Monetary Policy Shock: Jarocinski & Karadi (2020)

Extracting monetary policy surprises

- CB announcements include both information on monetary policy and economic outlook.
- Disentangle both using a structural VAR model.
- Exploit high-frequency co-movement of interest rates and stock prices around policy announcements.
- Surprise policy tightening raises interest rates and reduces stock prices.

Method

- Use high-frequency financial data in a 30-minute window around:
 - ECB Governing Council's policy rate decision.
 - ECB President's press conference (forward guidance and communication).
- 280 ECB policy announcements between 1999 and 2016 (extended)
- Estimate surprises in the EONIA interest rate swaps with maturities between 1 month and 2 years and EURO STOXX 50

Smooth Local Projections (Barnichon & Brownlees, 2019)

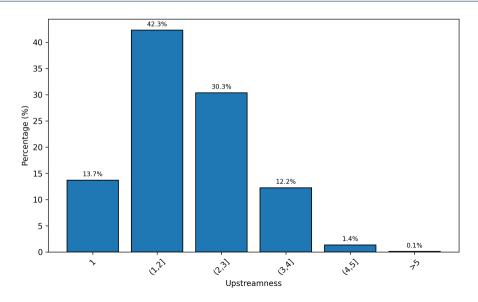
Standard local projections (LPs)

• Estimate IRF separately at each horizon h, leading to noisy IRFs.

Smooth Local Projections (SLP)

- Impose a smoothness prior across horizons to reduce variance.
- Reduces estimation noise while retaining the flexibility of local projections.

Approach


- Estimate the LP regression: $y_{t+h} = \alpha_h + \beta_h z_t + \varepsilon_{t+h}$
- But treat the impulse response $\{\beta_h\}$ as the evaluation of a smooth function:

$$\beta_h = \sum_{k=1}^K \theta_k B_k(h)$$

where $B_k(h)$ are basis functions (e.g., B-splines)

• Estimate $\theta = (\theta_1, \dots, \theta_K)$ via penalized least squares

Distribution of upstreamness (pooled across years)

Sales - number of customers/suppliers

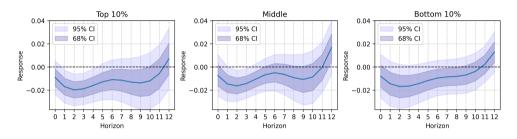


Figure: IRFs for top and bottom 10% of outdegree distribution.

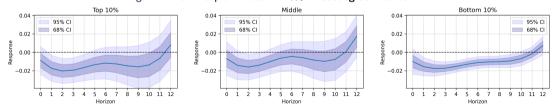
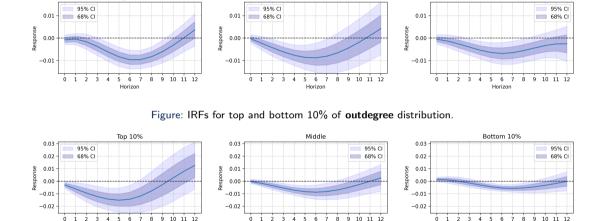



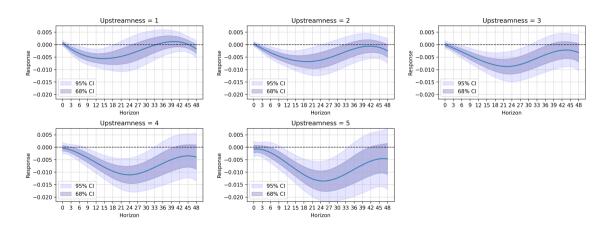
Figure: IRFs for top and bottom 10% of indegree distribution.

Prices - Number of customers/suppliers

Top 10%

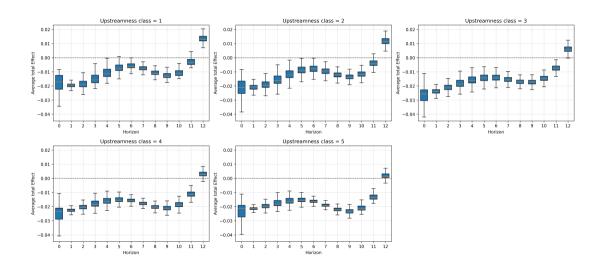
Horizon

Middle

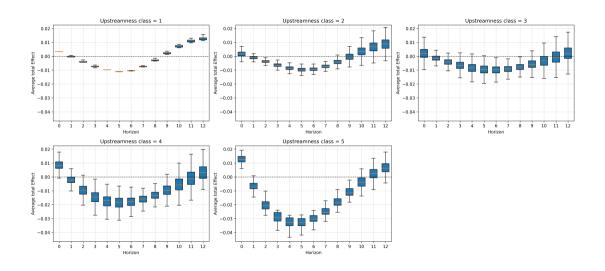

Bottom 10%

Horizon

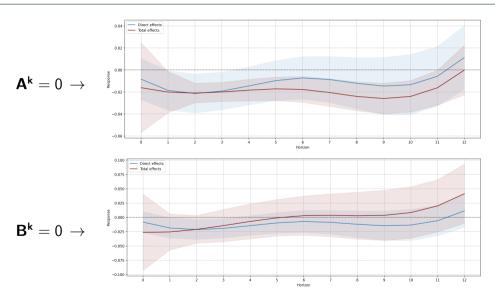
Figure: IRFs for top and bottom 10% of indegree distribution.

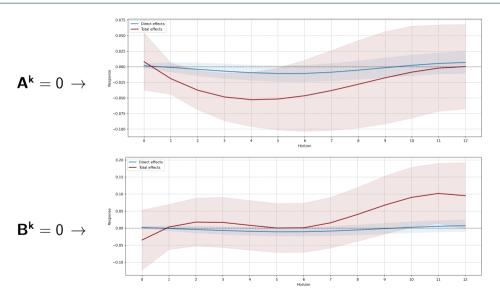

Horizon

Monthly prices - upstreamness



• Similar results also with monthly prices


Total average indirect effects sales - Boxplots


Total average indirect effects prices - Boxplots

Sales: upstream vs downstream firms

Prices: upstream vs downstream firms

