Micro and macro cost-price dynamics in normal times and during inflation surges

Luca Gagliardone, Mark Gertler, Simone Lenzu and Joris Tielens

Discussant: Alari Paulus (Eesti Pank)

ChaMP WS2 Workshop Vienna, 31 Oct 2025

The views expressed are personal and do not necessarily represent the official views of Eesti Pank or the Eurosystem.

In a nutshell*

- ► Theoretical **menu-cost** pricing model, combining various elements (free price adjustments, idiosyncratic shocks, strategic complementarities)
- Empirical analysis for BE manufacturing firms 1999-2023 (quarterly)
- Extensive and very detailed micro-data from various sources (producer prices, production costs, price adjustment frequencies)
- ► Focus: state-dependence, large shocks, price gaps, pass-through
- ⇒ Impressive work, great data, well developed analysis, insightful.

Novelty

- Derives closed-form pass-through profiles
 - Building on various models (Nakamura and Steinsson, 2010; Auclert et al., 2024)
- Adds empirical evidence for state-dependent pricing
 - Extending literature on inflationary episodes: historic (Gagnon, 2009; Wulfsberg, 2016; Nakamura et al., 2018; Alvarez et al., 2019) and the recent surge (Cavallo et al., 2024; Fadejeva et al., 2025; Gautier et al., 2025; Montag and Villar, 2025)
 - ▶ **Price gaps** directly estimated, using not only prices but also production costs
- Novel identification strategy (moments of the joint distribution, actual shocks)
- Pass-through both in detailed cross-sectional and aggregate time series

Price adjustments

- Price changes vs price increases/decreases
 - Could show in Table 1 and for GHF
- Price adjustments and frequency measured with different datasets
 - (a) Censor very small adjustments: $|\Delta p_{ft}| < 0.01$
 - (b) Calibrate frequencies: $I_{tt}^+ = 0 \Longleftrightarrow \Delta p_{tt} < \kappa^+ \cdot Var_t(\Delta p_{tt})$ if $\Delta p_{tt} > 0$
 - Could ensure consistency bw (a) and (b)?
- 'Free price adjustments'
 - Does censoring affect estimation of a₀?
 - $\hat{a}_0 = 0.188$ seems a rather **large** probability (conceptually)
 - How should we think of these in practice? Within-firm product portfolios (complementarities)? Could explore in data?

Price gaps

- Strategic complementarities
 - ▶ Limited importance overall (as static ≈ dynamic reset price)?
 - ► How sensitive are price gaps to the choice of Ω? Could extend Table 1 and Fig 5 with other values for Ω ∈ [0, 1).
- ► GHF: freq. of price adj. increases with the abs. value of price gaps
 - cf. Karadi et al. (2023), Gautier et al. (2025): similar V-shape
 - asymmetric (but note differing signs)
- Firms adjust prices such that price gaps are nearly **closed**
 - cf. Karadi et al. (2023) find also 1:1, Gautier et al. (2025) much less
 - note again differing signs (neg vs pos slope)

Model performance

- ► The calibrated model performs well, can closely **track** short-run dynamics in inflation and to an extent freq. of price adjustments
 - Why large deviations in 2012-2019 (Fig 15c)?
 - cf. differences bw pre- and post-pandemic averages (Table 1)
- In a Calvo setup, the model explains only about 2/3 of the post-pandemic inflation surge
 - cf. Karadi et al. (2023): SD (vs Calvo) increases price-level flexibility by 1/3
 - Is that little (for such a simplistic approach)?

State dependence

- Presence vs extent of state dependence
 - cf. Alvarez et al. (2016), Karadi et al. (2023): kurtosis, GHF slope parameter
- If Calvo an extreme case, then should we still think about a dichotomy of state-dependent vs time-dependent pricing?
- 'Selection effect' increases the degree of monetary neutrality and amplifies aggregate inflation
 - cf. Karadi et al. (2024): price misalignment increases increases the probability of price adj., but no selection in response to aggregate shocks