The Economics of Biodiversity Loss

Stefano Giglio (Yale), Theresa Kuchler (NYU Stern), Johannes Stroebel (NYU Stern), Olivier Wang (NYU Stern)

> ECB Forum on Central Banking Sintra, July 2024

Accelerating Loss in Biodiversity

- Recent species extinction rates 10-100x higher than prior (Ceballos et al, 2015, Science)
- Concern: This might affect economic activity and potentially financial stability
- Existing models of economy-nature interaction usually consider monolithic stock of natural capital

Accelerating Loss in Biodiversity

- Recent species extinction rates 10-100x higher than prior (Ceballos et al, 2015, Science)
- Concern: This might affect economic activity and potentially financial stability
- Existing models of economy-nature interaction usually consider monolithic stock of natural capital
- Goal: Framework to understand economic implications of biodiversity (species) loss
- Value biodiversity using a human-centric approach through its provision of ecosystem services that support economic activity:
 - **Provisioning services** (e.g., agricultural production of food, timber,...)
 - **Regulating and supporting services** (e.g., pollination, clean air, water, pest regulation, carbon sequestration, ...)

<u>This paper</u>: Economics of Biodiversity Loss

1. New model of the role of bio*diversity* in producing ecosystem services

- Based on key features documented in ecology literature
- Key insight: Importance of complex interactions of species
- Applications: Consider economic risks from species loss, ...
- **2.** Two-way interactions: biodiversity \leftrightarrow economy
 - Ecosystem services as input into production
 - Production reduces biodiversity (e.g., through land use)
 - Applications: Optimal conservation, ...

3. Empirically test model implications using asset prices

Modeling Biodiversity

Aggregate Output Y = F(X)

Y = F(X, E)

- E: Ecosystem Services
- X: Other factors of production

Aggregate Output

Y = F(X, E)

- E: Ecosystem Services
- X: Other factors of production

X and E are complements

 \rightarrow Decline in ecosystem services provision hard to offset by accumulation of physical capital or labor.

Aggregate Output

E: Ecosystem Services X: Other factors of production X and E are complements

Complementary ecosystem functions (e.g., pollination, nutrient recycling, ...)

Aggregate Output

E: Ecosystem Services X: Other factors of production X and E are complements

$$E = \left[\sum_{g=1}^{G} a_g E_g^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$
$$\sigma < 1$$
Complementarity

between functions

Aggregate Output Y = F(X, E)

E: Ecosystem ServicesX: Other factors of productionX and E are complements

$$E = \left[\sum_{g=1}^{G} a_g E_g^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$
$$\sigma < 1$$

Ecology literature:

Species substitutable (some redundancy) but imperfectly so (niche differentiation)

Aggregate Output

E: Ecosystem Services X: Other factors of production X and E are complements

$$E = \left[\sum_{g=1}^{G} a_g E_g^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}}$$
$$\sigma < 1$$

Ecology literature:

Species substitutable (some redundancy) but imperfectly so (niche differentiation) \rightarrow Productivity is increasing & concave in biodiversity

Within Function

Effect depends on

- Substitutability between species (ε)
- Extent of compensatory growth of other species

Biodiversity Loss: Effect on Functional-Level

More substitutability & compensatory growth

- More resilience to initial losses
- Ecosystem function productivity higher at all levels of biodiversity

Across Function

- Complementarity across functions amplifies within-function concavity
- Decline in functional output reduces overall ecosystem output only when function is binding

Effect on output

- Depends on relative abundance of factors of production.
- Economic effects smaller in countries where output is currently constrained by lack of other factors.

Implications

- Initial losses of biodiversity might have only small effects on output, but each loss reduces the economy's **resilience** to future losses.
 - Small losses from past biodiversity loss do not imply small losses from future species extinction ('tipping points')
- Effects of biodiversity loss are **context-dependent**
 - Losses concentrated in a few functions or in those with little redundancy are particularly damaging
 - As species go extinct, the remaining species are more likely to become keystone species that don't have a functional replacement.
 - The marginal economic value of species differs substantially across functions, countries, and ecosystems.
 - Important for optimal targeting of conservation efforts

Risk = f(Hazard, Exposure, Vulnerability)

Risk = f(Hazard, Exposure, Vulnerability)

• Substantial prior progress measuring exposure (and to some extent vulnerability): "We find that 42% of the value of securities held by French financial institutions comes from issuers that are highly or very highly dependent on one or more ecosystem services."

A "Silent Spring" for the Financial System? Exploring Biodiversity-Related Financial Risks in France

Romain Svartzman¹, Etienne Espagne², Julien Gauthey³, Paul Hadji-Lazaro⁴, Mathilde Salin^{1,5}, Thomas Allen¹, Joshua Berger⁶, Julien Calas², Antoine Godin², Antoine Vallier⁶

August 2021, WP #826

Risk = f(Hazard, Exposure, Vulnerability)

Q: Likelihood of losing ecosystem service provision due to biodiversity loss?

Paper proposes a formal definition of "ecosystem fragility"

Risk = f(Hazard, Exposure, Vulnerability)

Q: Likelihood of losing ecosystem service provision due to biodiversity loss?

Paper proposes a formal definition of "ecosystem fragility"

Risk = f(Hazard, Exposure, Vulnerability)

Q: Likelihood of losing ecosystem service provision due to biodiversity loss?

Paper proposes a formal definition of "ecosystem fragility"

Direct loss of community abundance (e.g., biomass)

Risk = f(Hazard, Exposure, Vulnerability)

Q: Likelihood of losing ecosystem service provision due to biodiversity loss?

Paper proposes a formal definition of "ecosystem fragility"

Lower functional diversity → Less efficient use of resources

Risk = f(Hazard, Exposure, Vulnerability)

Q: Likelihood of losing ecosystem service provision due to biodiversity loss?

Paper proposes a formal definition of "ecosystem fragility"

Species loss concentrated in few functions particularly damaging

Risk = f(Hazard, Exposure, Vulnerability)

Q: Likelihood of losing ecosystem service provision due to biodiversity loss?

Paper proposes a formal definition of "ecosystem fragility"

Framework to guide translation of ecological findings into economic effects

Is biodiversity loss reflected in asset prices?

- Model prediction: Biodiversity loss \rightarrow Current & future economic output
- Empirical challenge
 - Aggregate output and changes in biodiversity are slow moving, many confounds
 - Substantial effects from lower resilience to future shocks
- Asset prices
 - Reflect market expectations about future output
 - Incorporate news upon arrival
 - Here: CDS spreads as a high frequency measure of expected economic tail risk for countries.

- Do CDS spreads move upon "bad news" about biodiversity loss?
 - Giglio et al. (2023): Textual analysis of news about biodiversity loss in NYT
- How does this vary across countries with
 - i. Existing level of biodiversity degradation (measured by Yale's EPI)?
 - ii. Extent to which low levels of biodiversity are constraining economic output (share of renewable natural capital in total capital in World Bank data)?

- CDS spreads increase following negative biodiversity news
 - 1std increase in bad news associated with 0.157 percent increase in CDS spreads

	<u>% Change in CDS Spread (weekly)</u>	
Biodiversity News	0.157*** (0.026)	omitted
Biodiversity News * State of Biodiversity Score	-0.079*** (0.025)	-0.076*** (0.023)
Biodiversity News * Natural Capital Share of Wealth	-0.077** (0.030)	-0.072** (0.028)
Year * Tenor	x	
Week * Tenor		x
Country * Tenor * Year	x	x
Ν	403,047	403,047
N excluding singleton observations	402,993	402,977
Unique countries	89	
Sample period	2001-2022	

- CDS spreads increase following negative biodiversity news
 - 1std increase in bad news associated with 0.157 percent increase in CDS spreads
- Consistent with model, CDS spreads are less sensitive when
 - Biodiversity less degraded
 - Higher share of natural capital (physical capital the constraining factor of production)

_	% Change in CDS Spread (weekly)	
Biodiversity News	0.157*** (0.026)	omitted
Biodiversity News * State of Biodiversity Score	-0.079*** (0.025)	-0.076*** (0.023)
Biodiversity News * Natural Capital Share of Wealth	-0.077** (0.030)	-0.072** (0.028)
Year * Tenor	X	
Week * Tenor		x
Country * Tenor * Year	x	x
Ν	403,047	403,047
N excluding singleton observations	402,993	402,977
Unique countries	89	
Sample period	2001-2022	

- CDS spreads increase following negative biodiversity news
 - 1std increase in bad news associated with 0.157 percent increase in CDS spreads
- Consistent with model, CDS spreads are less sensitive when
 - Biodiversity less degraded
 - Higher share of natural capital (physical capital the constraining factor of production)

 \rightarrow Financial markets appear to care about biodiversity risks

→Consistent with our earlier work indicating that these risks are priced in the cross-section of US equities (Giglio et al, 2023; <u>www.biodiversityrisk.org</u>)

Two-way interactions between biodiversity and the economy

Biodiversity and the Economy

- So far: Biodiversity \rightarrow ecosystem service provision and economic output
- Paper also discusses the other direction
 - Land use increases production but degrades future biodiversity
 - Policy Choice: Optimal level of land use vs. conservation?
 - Generalizes classic analysis of optimal extraction of exhaustible resource

Biodiversity and the Economy

- So far: Biodiversity \rightarrow ecosystem service provision and economic output
- Paper also discusses the other direction
 - Land use increases production but degrades future biodiversity
 - Policy Choice: Optimal level of land use vs. conservation?
 - Generalizes classic analysis of optimal extraction of exhaustible resource
- Biodiversity losses today makes ecosystems more fragile in future
 - Incentive for early conservation
- Dynamics can be complex (non-linear, state- and context-dependent)
 - Non-trivial to implement optimal conservation
 - Substantial uncertainties introduce precautionary motives

Biodiversity and the economy

- Capital-rich economies
 - Ecosystem services more likely to be constraining factor of production
 - Higher incentives for preservation today
- Capital-poor economies
 - Nature comparably more abundant → Incentive to use land for production now, partially compensating for lack of other capital
 - Degradation of biodiversity destroys opportunities for future development
 - Myopic decision makers overexploit ecosystems
 - \rightarrow Welfare improvements from regulating / incentivizing conservation

Conclusion

- Economics of Biodiversity Loss
 - Model role of biodiversity in producing ecosystem services
 - Two-way interaction between biodiversity and economy
 - Empirical evidence that asset markets incorporate biodiversity risks
- **Conceptual framework** for range of policy applications
- Starting point for collaboration with ecologists to measure relevant objects.