The Past, Present and Future of European Productivity

Antonin Bergeaud HEC Paris

ECB Forum on Central Banking July 2024

Growth, the very long run

Figure: GDP per capita in the euro area since 1890. Source: www.longtermproductivity.com

- GDP per capita in the EA: 2.1% per year on average since 1890
- ${\hfill \circ}$ Most gains from 1950 to 1980:
 - $\circ~$ Consumption per capita \times 3
 - Working time -400 hours
- Since 1995: 1.1% on average per year
 - Since 2004: 0.7%

Euro area and the US

- Figure: GDP per capita in the euro area since 1890. US = 1. Source: www.longtermproductivity.com
- Different dynamics in the US
 - Remarkable constant 2% growth rate
- Europe caught-up after WW2 but diverges since 1995
- In 2022 same relative gap as in... 1970

The past, present and future of European productivity

• A simple decomposition

- Since 1890: labour productivity $\approx \times 20$
- GDP per capita: $\approx \times 10$
- Working time divided by 2
- To understand the dynamics of GDP per capita
 - Productivity gains
 - Choice regarding how to use these gains (Consumption / Leisure)

- In this paper we look at the drivers of GDP per capita in Europe over the 20th century
 In particular what explains the 1950-1980 exceptionnal period
- We focus on the reasons behind the slowdown since 1995 and the post-pandemics trends
- And we discuss what the future of European productivity can be
 - Artificial Intelligence
 - Environmental transition

The past (1890-1995)

Another decomposition

$$\frac{GDP}{Pop} = \frac{TFP.K^{\alpha}.H^{1-\alpha}}{Pop} = \underbrace{TFP \times \left(\frac{K}{H}\right)^{\alpha}}_{\text{Labour Productivity}} \times \frac{Emp}{Pop} \times \frac{H}{Emp}$$

Figure: Growth Accouting

Growth accouting

- Total factor productivity (TFP) main driver of GDP per capita over the long run
 - Catch-up of Europe is essentially due to resorbing TFP differences with US

- ${\small \odot}~$ After 1975
 - Negative relative contribution of employment rate
 - Since 1995: working time declined faster than in the US
 - No more relative TFP gains
- European preference for more leisure
 - With less TFP this implies less growth

80% . 60% 40% 20% 0% -20% -40% TEP. -60% Capital Deepenin -80% Employment Rate Average Working Time -100% Correction . מה לה מה שה שה שה שה שה שה שה לה מה מה שה שה שה שה שה שה שה שה שה לה בה לה מה שה לה את שה שה שה שה שה שה

Figure: Growth Accouting: EA vs the US

- After WW2, Europe developed institutions that favoured investment to replace old capital \implies Capital Deepening
- Europe also increased its total factor productivity
 - Relied on a relatively educated population
 - Massively adopted US technologies \longrightarrow US firms share of French/German patents increased from 10 to 25% (IBM, GE, Kodak...)
- Europe also relied an (almost) unlimited supply of energy (oil)

- Public investment into R&D not coordinated enough and not mission-oriented as in the US
 - Federal R&D expenditure in the US: almost 2% of GDP in 1960s (Dyèvre, 2024)
 - $\circ~40\mathrm{b}$ USD for the sole NASA in 1970
 - Spillovers to electronic and computer technologies
- Europe's innovation policy relied on the development of national champions
 - Smaller markets
 - Costly failures
 - Limit entry of firms
 - Competition of US (then Japanese) firms

• As a result: Europe as a whole missed the IT revolution

Big waves of productivity

Figure: Filtered TFP growth. Source: Bergeaud, Cette and Lecat (2016)

The present (1995-2023)

Figure: Labour productivity EA and US and deviation to trend

Why?

Short term causes

- Shocks such as pandemics and Russian's invasion of Ukraine \implies labour reacted less than output Show regression
 - Why? Hiring difficulties: firms reluctant to let go their workforce
- ${\ensuremath{\, \circ \, }}$ Geopolitical risk / Disruption of Global Value Chains \Longrightarrow stronger impact on more productive firms
- Zombification of the economy due to policies conducted during Covid

Why?

Short term causes

- Shocks such as pandemics and Russian's invasion of Ukraine \implies labour reacted less than output Show regression
 - Why? Hiring difficulties: firms reluctant to let go their workforce
- ${\ensuremath{\, \circ \, }}$ Geopolitical risk / Disruption of Global Value Chains \Longrightarrow stronger impact on more productive firms
- Zombification of the economy due to policies conducted during Covid

Structural causes

- Structural reduction of working time \rightarrow change in preferences? (Time series)
- Misallocation of R&D
- Lack of innovation in high tech

Misallocation of R&D

- R&D expenditures in Euro area: 2.3% of GDP (3.4% in the US) Time series
- ${\ensuremath{\, \circ }}$ Public R&D expenditures are similar \longrightarrow Not a problem of public spendings
 - Main question is its allocation
 - Innovation and industrial policies in Europe has led to a **middle technology trap** (Fuest et al., 2024)
- Top patenting firms in 2005
 - USA: Procter & Gamble, 3M, General Electric, DuPont, Qualcomm
 - EA: Siemens, Bosch, Ericsson, Philips, BASF
- Top patenting firms in 2023
 - **USA:** Qualcomm, Microsoft, Apple, Google, IBM
 - EA:

Misallocation of R&D

- R&D expenditures in Euro area: 2.3% of GDP (3.4% in the US) Time series
- ${\ensuremath{\, \circ }}$ Public R&D expenditures are similar \longrightarrow Not a problem of public spendings
 - Main question is its allocation
 - Innovation and industrial policies in Europe has led to a **middle technology trap** (Fuest et al., 2024)
- Top patenting firms in 2005
 - USA: Procter & Gamble, 3M, General Electric, DuPont, Qualcomm
 - EA: Siemens, Bosch, Ericsson, Philips, BASF
- Top patenting firms in 2023
 - **USA:** Qualcomm, Microsoft, Apple, Google, IBM
 - EA: Bayer, Bosch, Ericsson, Philips, BASF

Middle technological trap

Figure: Patents filed under the PCT (OECD)

Figure: High technologies patents filed under the PCT

Why?

- European innovation policies are **unsifficiently coordinated**
 - Benefit of large market not exploited enough
 - Capital market is unsufficiently integrated (Letta, 2024)
- R&D subsidies cannot be the only instrument
 - Very hard to direct to the right firms
 - Moral hazard and misreporting
- Innovation policies do not sufficiently rely on public research
 - Spillovers from public to private research can be sizable
 - A way to direct public R&D support to the firms with the best capabilities
 - Important effects historically in the US (Gross and Sampat, 2023) and succesful examples in Europe (Bergeaud et al., 2023)

Table: Origin of the basic knowledge used in patents in specific technologies

	USA	Japan	China	Europe
Additive Manufacturing	51%	6%	3%	28%
Blockchain	54%	5%	4%	23%
Computer Vision	54%	5%	3%	27%
Genome Editing	57%	5%	1%	29%
Hydrogen Storage	35%	12%	6%	29%
Self-Driving Vehicle	49%	6%	2%	28%

The future

- AI can impact growth through many channels
 - Automate some tasks and free up time for creative and more valuable activities (Automation channel)
 - Enhance workers' efficiency by complementing workers in core tasks (Automation channel)
 - Automate the production of ideas and improve R&D productivity (R&D and TFP)
 - Substitute labour with capital (Capital Deepening)
- Can the global effect match what we experienced with other General Purpose Technologies?

- Acemoglu (2024) offers a simple way to estimate the automation channel. Product of 4 components
 - Share of GDP accounted for by exposed tasks
 - ² Share of these tasks for which it is cost-effective to use AI
 - 3 Average saving cost from AI adoption
 - 4 The labour share

The Automation Channel

- What is the average efficiency gains from AI adoption in impacted tasks?
- Some evidence from the literature from GenAI based on RCT. Workers using GenAI are
 - Faster $\longrightarrow 40\%$ increase for analysts (Noy and Zhang, 2023)
 - More precise $\longrightarrow 23\%$ increase in prediction accuracy in a forecasting (Schoenegger et al., 2024)
 - More creative \longrightarrow better rated stories (Doshi et al., 2023)
- But workers may trust AI too much in areas where AI does not have a comparative advantage

- Acemoglu (2024) offers a simple way to estimate the automation channel. Product of 4 components
 - ① Share of GDP accounted for by exposed tasks $\approx 45\%$
 - 2 Share of these tasks for which it is cost-effective to use AI $~~\approx 40\%$
 - (3) Average saving cost from AI adoption $\approx 35\%$

AI: what can we expect

Figure: Estimated TFP gains from AI adoptiont through automation in next 10 years. Adapted from Acemoglu (2024)

- Gains from adopting AI likely to be important but not substantial
- Most of the gains will come from producing AI to create new ideas
- This requires to be at the technological frontier and to be able to produce new models and tools

AI: where are we in Europe

Figure: AI patents per region

Figure: AI articles in Europe and in other regions (11m in total)

- Energy and environmental transition requires a complex mix of policies, regulations and innovations
 - But green innovation is necessary to reduce our footprint while limiting the economic impact
- Europe is a clear leader in producing green technologies See
- Green innovation also generates important spillovers to other sector See
- But the green innovation is particularly sensitive to the ability of young firms to innovate
 - Important question of how to finance these firms

Green transition

Figure: Share of Green patent worldwide (Aghion et al., 2024)

Conclusion: European productivity on the long-run

• The Past

- Catch-up: adoption, low energy price, investment
- Missed IT revolution

• The Present

- Recent slowdown partly cyclical but structural factors are still active
- Europe is a second-mover in most high-tech
- Structural changes in innovation policies and capital markets needed
- Capitalize on European strenghts: research, market size, environment

• The Future

- Gains from AI will not be substantial unless AI revolutionalizes the creation of ideas
- Potential gains from green innovation if young firms find external finance

Appendix

Deviation from trend in the US

Figure: Comparison of GDP per capita trends in the US

$$\log(lp_{i,c,t}) = \alpha_{i,c} + \gamma X_{i,c,t-1} + \phi_{c,t} + \psi_{i,t} + \epsilon_{i,c,t} \tag{1}$$

• Indices:

- *i*: Industry (32 industries)
- c: Country (21 countries)
- t: Year (1995-2019)

• Dependent Variable: $\log(lp)$

• Level of value added in volume divided by total working time, taken in logarithm.

${\ensuremath{\, \bullet \, }}$ Main Regressor: X

• Ratio of IT capital over total capital stock in volume.

• Fixed Effects:

- $\alpha_{i,c}$: Industry-country fixed effects
- $\phi_{c,t}$: Country-year fixed effects
- $\psi_{i,t}$: Sector-year fixed effects
- $\bullet~$ Coefficient of Interest: γ
 - Captures the effect of an increase in the share of IT capital on labour productivity.

Results Summary:

- Excluding $\phi_{c,t}$ and $\psi_{i,t}$, using year fixed effect (Column 1)
- Adding $\phi_{c,t}$ (Column 2)
- Fully saturated model with $\psi_{i,t}$ (Column 3)
- IV approach with instrument Z (Column 4)

Instrument Z:

- $Z = Z_t \cdot Z_i \cdot Z_c$
- Z_t : Time-specific factor US production price of computer sector divided by value added price.
- Z_i : Sector-specific factor US sector-specific ICT intensity in 1995.
- Z_c : Country-specific factor Share of patents at EPO before 1995 citing US patents in technology H.

$$\log(\text{PROD}_{i,c,t}) = \alpha_{i,c} + \gamma X_{i,c} \times T_t + \phi_{c,t} + \psi_{i,t} + \epsilon_{i,c,t}$$
(2)

• Indices:

- i: Sector (27 manufacturing sectors)
- c: Country (18 countries)
- t: Quarter (excluding year 2020)

• **Dependent Variable:** $PROD_{i,c,t}$

• Measures production of sector i in country c during quarter t.

• Main Regressor: $X_{i,c}$

• Share of import from BRIICS defined in 2019 for a given sector-country pair.

• Dummy Variable: T_t

• Equals 1 after 2020q1.

• Fixed Effects:

- $\alpha_{i,c}$: Sector-country fixed effects
- $\phi_{c,t}$: Country-time fixed effects
- $\psi_{i,t}$: Sector-time fixed effects

Table: Production, Hours Worked, and Employment

	Exposure to BRIICS			Exposure to Russian		
	(1)	(2)	(3)	(4)	(5)	(6)
γ	-1.406 (0.499)	-0.968 (0.446)	-0.817 (0.313)	-1.129 (0.508)	-0.804 (0.490)	-0.731 (0.306)
Obs. Adjusted \mathbb{R}^2	$36,749 \\ 0.816$	$34,579 \\ 0.790$	$35,588 \\ 0.771$	$36,749 \\ 0.816$	$34,579 \\ 0.790$	$35,588 \\ 0.771$

Working time in Euro area

Figure: Average working time in the euro area

Time series

Figure: R&D expenditures in main regions

Europe leads in green tech

Figure: Number of green patents filed under PCT by region. Source: OECD

Figure: Share of green patents filed under PCT by region. Source: OECD

	Fwd Citations	Quality Indicator	Generality	Originality
Green patent	0.353 (0.0408)	0.016 (0.0014)	0.039 (0.0144)	0.044 (0.0131)
Average value	0.978	0.314	0.351	0.675
Obs. Year-Tech Fixed effects	$\begin{array}{c} 2,249,577 \\ \text{Yes} \end{array}$	$\substack{2,249,577\\ \text{Yes}}$	$\substack{2,249,577\\ \text{Yes}}$	$\substack{2,249,577\\ \text{Yes}}$