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Abstract

Dynamic rational inattention problems used to be diffi  cult to solve. This paper provides sim-

ple, analytical results for dynamic rational inattention problems. We start from the benchmark 

rational inattention problem. An agent tracks a variable of interest that follows a Gaussian 

process. The agent chooses how to pay attention to this variable. The agent aims to minimize, 

say, the mean squared error subject to a constraint on information flow, as in Sims (2003). We 

prove that if the variable of interest follows an ARMA(p,q) process, the optimal signal is about
a linear combination of {Xt, . . . , Xt−p+1} and {εt, . . . , εt−q+1}, where Xt denotes the variable 
of interest and εt denotes its period t innovation. The optimal signal weights can be computed

from a simple extension of the Kalman filter: the usual Kalman filter equations in combination 

with first-order conditions for the optimal signal weights. We provide several analytical results 

regarding those signal weights. We also prove the equivalence of several different formulations 

of the information flow constraint. We conclude with general equilibrium applications from 

Macroeconomics.

Keywords: rational inattention, Kalman filter, Macroeconomics (JEL: D83, E32)
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Non-technical summary 

The recent literature on rational inattention studies decision-making when human attention is 

scarce. Sims (1998, 2003) formalized limited attention as a constraint on information flow and 

proposed to model decision-making with limited attention as optimization subject to this constraint. 

Sims’s motivation was to understand human behavior in a dynamic environment. He conjectured 

that rational inattention could provide a simple explanation for why a variety of economic variables, 

from consumption and investment to prices of goods and services, tend to display inertia in 

response to aggregate disturbances. Despite Sims’s focus on intertemporal settings, most work on 

rational inattention thus far has solved static models or analyzed economies that are independent 

over time. The reason is that dynamic attention choice problems are hard to solve. This difficulty has 

limited applicability of rational inattention, even though many economists find the idea of rational 

inattention plausible. 

This paper derives analytical results for dynamic rational inattention problems. We study the 

canonical dynamic attention choice problem proposed by Sims (2003, Section 4). An agent tracks a 

variable of interest that follows a Gaussian stochastic process. The agent chooses how to pay 

attention to this variable, i.e., the agent chooses the properties of the signals that the agent will 

receive, subject to the constraint on the flow of information between the signals and the variable of 

interest. The agent aims to minimize the mean squared error between the variable of interest and 

the action taken based on the signals. 

We focus on the case when the variable of interest, X(t), follows an ARMA(p,q) process, because it is 

well known from Time Series Econometrics that the evolution of many economic variables can be 

well described by a low-order ARMA(p,q) process. We prove that any optimal signal with i.i.d. noise 

is only about X(t) and the variables that appear in the best predictor of X(t+1) given full information 

at time t. In addition, we show that the agent can attain the optimum with a one-dimensional signal. 

For example, if X(t) follows an ARMA(2,1) process, one can restrict attention to signals of the form 

S(t) = a0X(t) + a1X(t−1) + b0ε(t) + ψ(t), where ε(t) is the innovation in X(t) in period t and ψ(t) is the 

i.i.d. noise. One only has to solve for the remaining signal weights (a0, a1, b0) and the variance of the

noise. The remaining signal weights, the variance of the noise, and the implied actions can be

computed from what we call the “rational inattention filter.” The rational inattention filter is the

Kalman filter with the observation equation that is optimal from the perspective of rational

inattention. Hence, anyone familiar with the Kalman filter can easily solve dynamic rational

inattention problems, as in Sims (2003), without any loss in generality.
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In a dynamic setting, the information choice problem is always forward-looking, because an agent 

cares about being well informed in the current period and about entering well informed into the 

next period. Entering well informed into the next period relaxes the agent’s attention constraint. If 

the variable of interest follows an AR(1) process, there is no tension between these two goals. 

Therefore, the optimal signal is S(t) = X(t) +ψ(t). We show that beyond an AR(1) process, there is a 

tension between these two goals and hence the optimal signal is generically not S(t) = X(t) + ψ(t). We 

refer to this property as the “dynamic attention principle.” 

We apply the paper’s analytical results in the context of two macroeconomic models, a business 

cycle model with news shocks about productivity and the model of price-setting proposed by 

Woodford (2002). Let us focus on the former application here. A popular assumption in business 

cycle models is that a change in productivity can be learned about before it actually occurs in 

production (“a news shock”). While fluctuations in expectations about future productivity seem a 

plausible source of the business cycle, it has proven difficult to construct models in which the 

business cycle is driven by news shocks about productivity. The key problem is that good news about 

future productivity makes agents wealthier and, in a neoclassical environment, this wealth effect 

increases both consumption and leisure, reducing labor input through a reduction in labor supply. 

With capital predetermined and current productivity unchanged, the decrease in labor input pushes 

output down. We point out that rational inattention on the side of firms is a force pushing labor 

input up after a positive news shock about productivity. The reason is that rationally inattentive 

firms choose not to distinguish carefully between current and future increases in productivity, and 

thus a news shock causes an increase in labor demand on impact of the news shock. The result that 

rationally inattentive firms choose not to distinguish carefully between current and future increases 

in productivity follows directly from the dynamic attention principle. 
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1 Introduction

The recent literature on rational inattention studies decision-making when human attention is 

scarce. Sims (1998, 2003) formalized limited attention as a constraint on information flow and 

proposed to model decision-making with limited attention as optimization subject to this constraint. 

Sims’s motivation was to understand human behavior in a dynamic environment. He conjectured 

that rational inattention could provide a simple explanation for why a variety of economic variables, 

from consumption and investment to prices of goods and services, tend to display inertia in response 

to aggregate disturbances. Despite Sims’s focus on intertemporal settings, most work on rational 

inattention thus far has solved static models or analyzed economies that are independent over 

time. The reason is that dynamic attention choice problems are hard to solve. This diffi  culty has 

limited applicability of rational inattention, even though many economists find the idea of rational 

inattention plausible.

This paper derives analytical results for dynamic rational inattention problems. We study the 

canonical dynamic attention choice problem proposed by Sims (2003, Section 4). An agent tracks 

a variable of interest that follows a Gaussian stochastic process. The agent chooses how to pay 

attention to this variable, i.e., the agent chooses the properties of the signals that the agent will 

receive, subject to the constraint on the flow of information between the signals and the variable of 

interest. The agent aims to minimize the mean squared error between the variable of interest and 

the action taken based on the signals.

We focus on the case when the variable of interest follows an ARMA(p,q) process, because it is 

well known from Time Series Econometrics that the evolution of many economic variables can be 

well described by a low-order ARMA(p,q) process

Xt = φ1Xt−1 + . . . + φpXt−p + θ0εt + . . . + θqεt−q,

where Xt denotes the variable of interest in period t and εt is the innovation in Xt in period t. We 

prove that any optimal signal with i.i.d. noise is only about Xt and the variables that appear in 

the best predictor of Xt+1 given full information at time t. In addition, we show that the agent 

can attain the optimum with a one-dimensional signal. Hence, without loss in generality, one can 

restrict attention to signals of the form

St = a0Xt + . . . + ap−1Xt−(p−1) + b0εt + . . . + bq−1εt−(q−1) +ψ t,
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where ψt is the i.i.d. noise. For example, if the variable of interest follows an ARMA(2,1) process,

one can restrict attention to signals of the form St = a0Xt + a1Xt−1 + b0εt + ψt. One only has to

solve for the remaining signal weights a0, a1, and b0, and for the variance of noise, σ2
ψ.

The question then becomes: What are the remaining signal weights and the implied actions?

The optimal signal weights and the implied actions can be computed from what we call the “rational

inattention filter.”The rational inattention filter is the Kalman filter with the observation equation

that is optimal from the rational inattention perspective. The signal given in the previous paragraph

has a simple state-space representation. Furthermore, one can derive first-order conditions for the

optimal signal weights. The rational inattention filter consists of the usual Kalman filter equations

and these first-order conditions for the optimal signal weights. Hence, anyone familiar with the

Kalman filter can easily solve dynamic rational inattention problems, as in Sims (2003), without

any loss in generality.

We then proceed by deriving analytical results regarding the remaining signal weights. Our

first analytical result about the remaining signal weights is what we call the “dynamic attention

principle.”In a dynamic setting, the information choice problem is always forward-looking, because

an agent cares about being well informed in the current period and about entering well informed

into the next period. Entering well informed into the next period relaxes the agent’s attention

constraint. If the variable of interest follows an AR(1) process, there is no tension between these

two goals. Learning about the present and learning about the future are the same thing. Therefore,

the optimal signal is St = Xt +ψt. Beyond an AR(1) process, there is a tension between these two

goals and hence the optimal signal is generically not St = Xt + ψt.
1 For example, suppose that

the variable of interest follows the process Xt = φ1Xt−1 + φ2Xt−2 + θ0εt with φ1, φ2, θ0 6= 0. Or

suppose that the variable of interest follows the process Xt = φ1Xt−1 + θ1εt−1 with φ1, θ1 6= 0. We

prove that in both cases the optimal signal is never St = Xt + ψt. The reason is that there is a

tension between learning about the present and learning about the future, and the agent wants to

enter well informed into the next period. Our second analytical result about the remaining signal

weights is that if the information flow is very large, then it becomes optimal for the agent to process

information mostly about the current optimal action Xt only.

1This result is not already implied by the earlier statements, because those statements do not rule out the possibility

that the optimal signal weights are a1 = . . . = ap−1 = b0 = . . . = bq−1 = 0.
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Finally, we prove the equivalence of a number of different formulations of the information flow

constraint that have appeared in the literature. Namely, we prove the equivalence of a constraint on

the information flow between sequences, a recursive formulation of the information flow constraint,

and a constraint on a particular signal-to-noise ratio.

We apply the paper’s analytical results in the context of two macroeconomic models, a busi-

ness cycle model with news shocks about productivity and the model of price-setting proposed by

Woodford (2002). Let us focus on the former application here. A popular assumption in business

cycle models is that a change in productivity can be learned about before it actually occurs in

production (“a news shock”). While fluctuations in expectations about future productivity seem a

plausible source of the business cycle, it has proven diffi cult to construct models in which the busi-

ness cycle is driven by news shocks about productivity. The key problem is that good news about

future productivity makes agents wealthier and, in a neoclassical environment, this wealth effect

increases both consumption and leisure, reducing labor input through a reduction in labor supply.

With capital predetermined and current productivity unchanged, the decrease in labor input pushes

output down. We point out that rational inattention on the side of firms is a force pushing labor

input up after a positive news shock about productivity. The reason is that rationally inattentive

firms choose not to distinguish carefully between current and future increases in productivity, and

thus a news shock causes an increase in labor demand on impact of the news shock.

In the paper we illustrate this observation in a simple model in which firms hire labor subject to

rational inattention and households are hand-to-mouth consumers. Here let us explain the intuition

with an example. Suppose that innovations in productivity can be learned about one period in

advance, and thus productivity follows an ARMA(1,1) process zt = φ1zt−1 + θ0εt + θ1εt−1 with

φ1, θ1 6= 0 and θ0 = 0. The paper’s analytical results imply that a manager who makes the labor

hiring decision can restrict attention to signals of the form St = a0zt+b0εt+ψt with b0 6= 0. Hence, a

manager who optimally allocates attention chooses a one-dimensional signal with a non-zero weight

on current productivity, zt, and a non-zero weight on the news shock, εt. The manager chooses

the non-zero weight on the news shock because entering well informed into the next period relaxes

the manager’s attention constraint. The optimal signal has the following implications for actions.

On impact of a positive news shock, εt > 0, the signal increases. Since the manager chose not to

distinguish carefully between increases in current productivity and increases in future productivity,
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the manager starts hiring already today.

We noted that most existing work on rational inattention solves static models or analyzes

economies that are independent over time. The papers that do study dynamic economies that are

correlated over time normally take one of the following three simplifying approaches: (i) assume

that agents act based on particular noisy signals without proving optimality of the signals (Luo,

2008, Paciello and Wiederholt, 2014), (ii) suppose that agents cannot costlessly access memory

(Woodford, 2009, Stevens, 2015), or (iii) solve by brute-force numerical optimization directly for

the actions under rational inattention (Sims, 2003, Section 4, Máckowiak and Wiederholt, 2015).2

There are two exceptions. Máckowiak and Wiederholt (2009, Section V) find analytically an

optimal signal in a special case of the dynamic attention choice problem analyzed here, the AR(1)

case. Furthermore, Steiner, Stewart, and Matějka (2015) study a general dynamic model with

discrete choice under rational inattention. They show that the dynamic problem can be reduced

to a collection of static problems, and that the solution takes the form of a dynamic logit with

endogenous biases. By contrast, this paper’s solution method applies to the class of dynamic

problems with Gaussian actions proposed by Sims (2003).

The following section presents the dynamic attention choice problem. Section 3 contains the

main analytical results: the dimensionality reduction result for an ARMA(p,q) process, and the

result that one can attain the optimum with a one-dimensional signal. Section 4 lays out the

rational inattention filter and the dynamic attention principle. The application to the business

cycle model with news shocks is in Section 5. The application to the price-setting model is in

Section 6. Section 7 concludes.

2 Decision problem

In this section we present the dynamic rational inattention problem. An agent tracks a variable of

interest that follows a Gaussian process. The agent chooses how to pay attention to this variable

so as to minimize the mean squared error, subject to a constraint on information flow.

The variable of interest, denoted Xt, follows a stationary Gaussian process. This process can

2See Sims (2010), Veldkamp (2011), or Wiederholt (2010) for a review of the literature on rational inattention.
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be an AR(p) process

Xt = φ1Xt−1 + . . .+ φpXt−p + θ0εt,

an MA(q) process

Xt = θ0εt + . . .+ θqεt−q,

or an ARMA(p,q) process

Xt = φ1Xt−1 + . . .+ φpXt−p + θ0εt + . . .+ θqεt−q, (1)

where p ≥ 1 and q ≥ 0 are integers, φ1, . . . , φp and θ0, . . . , θq are coeffi cients, and εt follows a

Gaussian white noise process with unit variance.3

At each time t ≥ 1, the agent receives a K-dimensional signal vector, SKt = (St,1, . . . , St,K)′,

with K ≥ 1, where each signal is about a potentially different linear combination of current and

past Xt and current and past εt

SKt = AXM
t +BεNt + ψKt . (2)

Here XM
t = (Xt, . . . , Xt−M+1)′ is the vector of current and past Xt, εNt = (εt, . . . , εt−N+1)′ is the

vector of current and past εt,M ≥ max {p, 1} and N ≥ max {q, 1} are arbitrarily large integers, and

A ∈ RK×M and B ∈ RK×N are matrices of coeffi cients. The noise vector ψKt =
(
ψt,1, . . . , ψt,K

)′
follows a Gaussian vector white noise process with variance-covariance matrix Σψ. The agent

chooses K, A, B, and Σψ.

The agent’s information set at any time t ≥ 1 includes any initial information and all signals

received up to and including time t

It = I0 ∪
{
SK1 , . . . , S

K
t

}
. (3)

The agent chooses the number of signals, K, what the signals are about, A and B, as well as

the variance-covariance matrix of noise, Σψ. The agent aims to minimize the mean squared error,

subject to a constraint on information flow. Formally, the agent solves

min
K,A,B,Σψ

E
[
(Xt − E [Xt|It])2

]
, (4)

3Without loss in generality, the coeffi cients on the largest lags are required to be non-zero, φp 6= 0 and θq 6= 0.
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subject to (1), (2), (3) and the information flow constraint

lim
T→∞

1

T
I
(
Z0, ε1, . . . , εT ;SK1 , . . . , S

K
T

)
≤ κ. (5)

Here Z0 is the vector of initial conditions, which consists of X0, . . . , X1−p in the AR(p) case,

ε0, . . . , ε1−q in the MA(q) case, and X0, . . . , X1−p, ε0, . . . , ε1−q in the ARMA(p,q) case.

The information flow constraint (5) formalizes the idea that the agent has a limited amount

of attention. The constraint restricts the information flow to the agent. Here κ is a parameter.

In general, the mutual information between two random vectors XT and ST , denoted I
(
XT ;ST

)
,

equals the difference between unconditional uncertainty and conditional uncertainty

I
(
XT ;ST

)
= H

(
XT
)
−H

(
XT |ST

)
,

where H
(
XT
)
denotes the entropy of the random vector XT and H

(
XT |ST

)
denotes the condi-

tional entropy of the vector XT given knowledge of ST . Entropy is simply a measure of uncertainty.

Hence, the term lim
T→∞

1
TH (Z0, ε1, . . . , εT ) quantifies how total uncertainty grows with time in the ab-

sence of signals and the term lim
T→∞

1
TH

(
Z0, ε1, . . . , εT |SK1 , . . . , SKT

)
quantifies how total uncertainty

grows with time in the presence of the signals. The difference between the two terms measures the

information flow to the agent.

Finally, the mean squared error in (4) is computed using the steady-state Kalman filter. A very

similar dynamic rational inattention problem is formulated and studied numerically in Sims (2003,

Section 4).

Equivalent formulations of the information flow constraint. Many formulations of the

information flow constraint are equivalent. For example, each sequence on the left-hand side of the

information flow constraint (5) can be replaced by any other sequence with the property that the

new sequence can be computed from the original sequence and vice versa. Thus, in the AR(p) case,

the information flow constraint (5) is equivalent to

lim
T→∞

1

T
I
(
X1−p, . . . , X0, X1, . . . , XT ;SK1 , . . . , S

K
T

)
≤ κ. (6)

Furthermore, dropping X1−p, . . . , X0 in (6) does not affect the limit in (6).

More importantly, the information flow constraint (5) is equivalent to a constraint on the differ-

ence between prior uncertainty and posterior uncertainty at a given point in time. This equivalence

result is new to the best of our knowledge and is formally stated in the following lemma.
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Lemma 1 Let ξt denote the following vector

ξt =


(
Xt, . . . , Xt−max{M,N+p}+1

)′ if q = 0(
Xt, . . . , Xt−max{M,N+p−q}+1, εt, . . . , εt−q+1

)′ if q > 0
.

Let SK,t =
{
SK1 , . . . , S

K
t

}
denote the set of signals received up to and including time t. The

information flow constraint (5) is equivalent to

lim
T→∞

[
H
(
ξT |SK,T−1

)
−H

(
ξT |SK,T

)]
≤ κ. (7)

Proof. See Appendix A.

In words, the left-hand side of the information flow constraint (7) is simply the difference

between prior uncertainty and posterior uncertainty at a given point in time about all variables

that the new signal can be about. In this formulation of the constraint, the vector ξt can be

any vector that has two properties: (i) XM
t and εNt can be computed from ξt, and (ii) ξt does not

contain any redundant elements. The particular vector ξt defined in the lemma is only an example.
4

Lemma 1 establishes the equivalence of two formulations of the information flow constraint that

have appeared in the literature and will be used in the following section to prove one of our main

results. Furthermore, in Section 4 we show that the information flow constraint (7) is equivalent

to a constraint on a particular signal-to-noise ratio once K = 1.

Equivalent formulations of the objective. One can also think of the agent as choosing the

properties of the stochastic process for the signal vector (i.e., K, A, B, and Σψ) in period zero so

as to minimize the discounted sum of future mean squared errors

∞∑
t=1

βtE
[
(Xt − E [Xt|It])2

]
, β ∈ (0, 1) .

After the agent has chosen the properties of the signal vector in period zero, the agent receives

a long sequence of signal vectors such that the conditional variance-covariance matrix of ξ1 given

information in period zero equals the steady-state conditional variance-covariance matrix of ξt given

4When q = 0 and M − p ≥ N , the vectors XM
t and εNt can be computed from XM

t . When q = 0 and M − p < N ,

one needs N − (M − p) additional lags of Xt to compute the vectors XM
t and εNt . Furthermore, when q > 0, one can

compute the moving-average terms {θ0ετ + . . .+ θqετ−q}t−M+p+1
τ=t from XM

t . To compute the innovations {ετ}t−N+1τ=t

one also needs εt, . . . , εt−q+1 and additional lags of Xt if M − p+ q < N .
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information in period t − 1. The mean squared error is then the same in every period t ≥ 1, and

the discounted sum of future mean squared errors can be expressed as

β

1− βE
[
(Xt − E [Xt|It])2

]
.

Dividing by β/ (1− β), which is simply a monotone transformation of the objective, yields objective

(4).

3 Main analytical results

The following two propositions characterize two properties of a solution to the dynamic rational

inattention problem (1)-(5).

Proposition 1 In the ARMA(p,q) case, any optimal signal vector is on linear combinations of{
Xt, . . . , Xt−(p−1)

}
and

{
εt, . . . , εt−(q−1)

}
only. In the AR(p) case, any optimal signal vector is on

linear combinations of
{
Xt, . . . , Xt−(p−1)

}
only. In the MA(q) case with q > 0, any optimal signal

vector is on linear combinations of Xt and
{
εt, . . . , εt−(q−1)

}
only. In the white noise case, any

optimal signal vector is on Xt only.

Proof. See Appendix B.

Proposition 2 The agent can attain the optimum with a one-dimensional signal.

Proof. See Appendix C.

These analytical results imply that one can reduce the dimensionality of the problem (1)-(5) 

significantly without any loss in generality. For example, in the ARMA(p,q) case, one can restrict 

attention to signals of the form

St = a0Xt + . . . + ap−1Xt−(p−1) + b0εt + . . . + bq−1εt−(q−1) +ψ t.

In the next section, we present a simple way of computing the remaining signal weights.

Non-stationarity. So far we have assumed that the variable Xt follows a stationary process. 

This assumption ensures that all conditional moments appearing in the proofs of Lemma 1 and

Propositions 1-2 are well-de
ned. For example, let Σt|t−1 denote the conditional variance-covariance
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matrix of ξt given It−1. Let Σt|t denote the conditional variance-covariance matrix of ξt given It.

Furthermore, let Σ1 and Σ0 denote limt→∞Σt|t−1 and limt→∞Σt|t, respectively. Objective (4)

and constraint (5) depend on Σ1 and Σ0. The assumption that the variable Xt follows a station-

ary process ensures that Σ1 and Σ0 are well-defined. One can relax the stationarity assumption.

Propositions 1-2 extend to the case of a non-stationary ARMA(p,q) process so long as all condi-

tional moments appearing in the proofs of Propositions 1-2 are well-defined. This requires that the

parameter κ is suffi ciently large.5

4 Rational inattention filter and dynamic attention principle

In the previous section, we showed that any optimal signal vector SKt is only about Xt and the

variables that appear in the best predictor of Xt+1 given full information at time t. In addition,

we showed that the agent can attain the optimum with a one-dimensional signal. Hence, in this

section, we restrict attention to signals of this form and we focus on how to compute the remaining

signal weights and the variance of noise in the optimal signal.

The state-space representation of the signal. Propositions 1 and 2 imply that one can

restrict attention to signals that have the following state-space representation

ξt+1 = Fξt + vt+1, (8)

St = h′ξt + ψt, (9)

where the state vector ξt is given by

ξt =



Xt if p = 0 and q = 0(
Xt, . . . , Xt−(p−1)

)′ if p > 0 and q = 0(
Xt, εt, . . . , εt−(q−1)

)′ if p = 0 and q > 0(
Xt, . . . , Xt−(p−1), εt, . . . , εt−(q−1)

)′ if p > 0 and q > 0

.

The matrix F is a square matrix and the length of the column vector vt equals the length of ξt.

The first element of vt+1 equals θ0εt+1 and the first row of the matrix F ensures that the first

5Moreover, Propositions 1-2 also hold for more general objectives. Proposition 1 holds for any objective that is a

function only of the elements of Σ0, while Proposition 2 holds for any objective that is a function only of the elements

of Σ0 and has the property that pure delay in the arrival of signals makes the agent worse off.
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row of the state equation (8) equals the law of motion for Xt. In the AR(p) case with p > 1, the

remaining elements of vt+1 equal zero and the remaining rows of the matrix F have a one just left

of the main diagonal and zeros everywhere else. In the MA(q) case and the ARMA(p,q) case with

q > 0, the vector vt+1 has q additional elements and the matrix F has q additional rows. The first

additional element of vt+1 equals εt+1 and the remaining additional elements of vt+1 equal zero.

The first additional row of the matrix F contains only zeros and the remaining additional rows

of the matrix F have a one just left of the main diagonal and zeros everywhere else. Finally, the

vector of signal weights h is a column vector with max {1, p} + q elements and the noise term ψt

follows a Gaussian white noise process with variance σ2
ψ > 0. The vector of signal weights h and

the variance of noise σ2
ψ are the objects of interest of this section.

Let Σt|t denote the conditional variance-covariance matrix of ξt given It, let Σt|t−1 denote the

conditional variance-covariance matrix of ξt given It−1, and let Q denote the variance-covariance

matrix of vt+1. For a given matrix F , a given matrix Q, a given vector h, and a given scalar σ2
ψ, one

can compute the variance-covariance matrices of the state vector, Σt|t and Σt|t−1, from the usual

Kalman filter equations

Σt+1|t = FΣt|tF
′ +Q, (10)

Σt|t = Σt|t−1 − Σt|t−1h
(
h′Σt|t−1h+ σ2

ψ

)−1
h′Σt|t−1. (11)

See, for example, Hamilton (1994), Chapter 13. Furthermore, since Xt follows a stationary process,

the limits Σ1 ≡ limt→∞Σt|t−1 and Σ0 ≡ limt→∞Σt|t exist and are given by

Σ1 = FΣ0F
′ +Q, (12)

Σ0 = Σ1 − Σ1h
(
h′Σ1h+ σ2

ψ

)−1
h′Σ1. (13)

See, for example, Hamilton (1994), Propositions 13.1-13.2.

The rational inattention filter. In the following, we call the Kalman filter with the obser-

vation equation that is optimal from a rational inattention perspective the “rational inattention

filter.”We have already proved that without loss in generality one can restrict attention to signals

of the form (9). We now show how one can compute the optimal vector of signal weights, h∗, and

the optimal variance of noise, σ2∗
ψ .

In the case of a one-dimensional signal, the information flow constraint reduces to a constraint

on a particular “signal-to-noise”ratio.
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Lemma 2 In the case of the one-dimensional signal (9), the information flow constraint (7) reduces

to a constraint on a particular “signal-to-noise” ratio

1

2
log2

h′Σ1h

σ2
ψ

+ 1

)
≤ κ, (14)

where h′Σ1h equals the variance of the informative component of the signal, conditional on t − 1

information, and σ2
ψ equals the variance of the noise component of the signal.

Proof. Conditional normality implies that

H
(
ξt|St−1

)
−H

(
ξt|St

)
=

1

2
log2

(
det Σt|t−1

det Σt|t

)
.

The information flow constraint (7) is thus equivalent to

1

2
log2

(
det Σ1

det Σ0

)
≤ κ.

Using equation (13) to substitute for Σ0 yields

det Σ1

det Σ0
=

1

det

(
I − 1

h′Σ1h+σ2ψ
hh′Σ1

) .
Furthermore, it follows from Sylvester’s determinant theorem that

det I − 1

h′Σ1h+ σ2
ψ

hh′Σ1

)
= det 1− 1

h′Σ1h+ σ2
ψ

h′Σ1h

)
=

σ2
ψ

h′Σ1h+ σ2
ψ

.

Substituting these equations into the previous weak inequality yields

1

2
log2

h′Σ1h

σ2
ψ

+ 1

)
≤ κ.

Collecting results we arrive at: Without loss in generality, the decision problem (1)-(5) can be

stated as

min
h∈Rmax{1,p}+q ,σ2ψ>0

(
1 0 · · · 0

)
Σ0


1

0
...

0

 , (15)
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subject to
1

2
log2

h′Σ1h

σ2
ψ

+ 1

)
≤ κ, (16)

where the conditional variance-covariance matrices of the state vector, Σ0 and Σ1, are given by the

usual Kalman filter equations (12)-(13).

The statement of the problem can be simplified further, because the information flow constraint

is always binding and the information flow constraint can be solved explicitly for the variance of

noise. The fact that the information flow constraint (16) is always binding implies

h′Σ1h

σ2
ψ

= 22κ − 1.

For all κ > 0, this constraint can also be expressed as

σ2
ψ =

h′Σ1h

22κ − 1
. (17)

Using the binding information flow constraint (17) to substitute for the variance of noise in the

Kalman filter equation (13) yields the following statement of the decision problem, for all κ > 0,

min
h∈Rmax{1,p}+q

(
1 0 · · · 0

)
Σ0


1

0
...

0

 , (18)

where the matrices Σ0 and Σ1 are given by

Σ1 = FΣ0F
′ +Q, (19)

Σ0 = Σ1 −
(
1− 2−2κ

)
h′Σ1h

Σ1hh
′Σ1. (20)

Expression (18) is the objective. Equations (19)-(20) are the usual Kalman filter equations, but

where the information flow constraint (17) has been used to substitute for the variance of noise in

equation (13). Equations (19)-(20) give the prior variance-covariance matrix of the state vector,

Σ1, and the posterior variance-covariance matrix of the state vector, Σ0, as implicit functions of the

matrices F and Q, the vector of signal weights h, and the information flow parameter κ.6 Solving
6One can also endogenize κ by augmenting the vector of choice variables by κ and by adding a cost function for

κ to the objective. In the set of first-order conditions presented below, this will simply add a first-order condition.

Note also that any cost function for κ can be expressed as a cost function for the signal-to-noise ratio by substituting

in the binding information flow constraint (16).
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this problem yields the optimal vector of signal weights, h∗. Substituting this vector into equation

(17) yields the optimal variance of noise, σ2∗
ψ .

First-order conditions. The problem (18)-(20) can be solved in many different ways, for

example, by brute-force numerical optimization or by stating and solving first-order conditions.

We found that solving the first-order conditions works well and therefore we state these first-order

conditions in the next paragraphs. We also use these first-order conditions below to derive more

analytical results regarding the optimal signal weights.

Since the optimal signal weight on Xt is different from zero and multiplying a signal by a non-

zero constant does not change the matrices Σ0 and Σ1, one can normalize the weight on Xt to

one without loss in generality (i.e., h1 = 1). If max {1, p} + q > 1, there are max {1, p} + q − 1

remaining optimal signal weights that one needs to solve for. The first-order conditions for these

signal weights can be derived as follows.

Substituting equation (20) into equation (19) and rearranging yields

Σ1 − F
[

Σ1 −
(
1− 2−2κ

)
h′Σ1h

Σ1hh
′Σ1

]
F ′ −Q = 0. (21)

This equation gives Σ1 as an implicit function of F , Q, h, and κ. Changing a single element of the

vector of signal weights h potentially affects all elements of Σ1. Let Σ1,ij denote the i,j-element of

Σ1 and let d = max {1, p} + q. The derivatives (dΣ1,ij/dhl) for i, j = 1, . . . , d and l = 2, . . . , d are

given by

∀l = 2, . . . , d :

d∑
i=1

d∑
j=1

Zij
dΣ1,ij

dhl
+ Z l = 0. (22)

Here the (d× d) matrix Z denotes the left-hand side of equation (21), the (d× d) matrix Zij

denotes the derivative of Z with respect to Σ1,ij , i.e.,

Zij =


∂Z11
∂Σ1,ij

· · · ∂Z1,d
∂Σ1,ij

...
. . .

...
∂Zd,1
∂Σ1,ij

· · · ∂Zd,d
∂Σ1,ij

 ,
and the (d× d) matrix Z l denotes the derivative of Z with respect to hl, i.e.,

Z l =


∂Z11
∂hl

· · · ∂Z1,d
∂hl

...
. . .

...
∂Zd,1
∂hl

· · · ∂Zd,d
∂hl

 .
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Appendix D gives closed form expressions for Zij and Z l, which depend on Σ1. Finally, when p > 1,

the objective (18) equals Σ1,22, because the second element of the state vector ξt equals Xt−1 and

Σ1 is the variance-covariance matrix of the state vector given information at time t − 1. In this

case, the first-order conditions for the optimal signal weights are simply7

∀l = 2, . . . , d :
dΣ1,22

dhl
= 0. (23)

Solving the system of equations (21)-(23) for the (d× d) symmetric matrix Σ1, the d2 (d− 1)

derivatives (dΣ1,ij/dhl), and the (d− 1) signal weights h2, . . . , hd yields signal weights that satisfy

the first-order conditions.

Proposition 3 The optimal signal weights have to satisfy equations (21)-(23). Given the optimal

signal weights, the conditional expectations of the state vector can be computed from the usual

Kalman filter equations.

The dynamic attention principle. We now ask whether the optimal signal can have the

simple form St = Xt + ψt beyond an AR(1) process. In other words, we ask whether the optimal

signal vector can have the property that the weights on all variables apart from Xt equal zero.

Proposition 1 does not rule out this possibility. The answer is: Beyond an AR(1) process, the

optimal signal is generically not St = Xt + ψt. We call this the “dynamic attention principle.”

The intuition is that in a dynamic setting an agent cares about being well informed in the

current period and about entering well informed into the next period. If the variable of interest

follows an AR(1) process, there is no tension between the goals of being well informed today and

entering well informed into the next period. Learning about the present and learning about the

future are the exact same thing. Thus, the optimal signal is St = Xt + ψt. Beyond an AR(1)

process, there is a tension between these two goals and therefore the optimal signal is generically

not St = Xt + ψt.

To begin, consider an AR(1) process, Xt = φ1Xt−1 + θ0εt. Propositions 1 and 2 imply that one

can restrict attention to signals of the form St = a0Xt + ψt. Substituting F = φ1, Q = θ2
0, and

h = a0 into equations (19)-(20) yields Σ1 = φ2
1Σ0 + θ2

0 and Σ0 = 2−2κΣ1. Substituting these two

7 In the case of p ≤ 1 and max {1, p}+ q > 1 (i.e., in the case of an ARMA(1,q) process or an MA(q) process), the

first-order conditions are only marginally more complicated and are omitted here to save space. For an example, see

the proof of Proposition 6.
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equations for the conditional variances of Xt given information at time t − 1 and t into equation

(17) yields the following proposition.

Proposition 4 Suppose the variable of interest follows an AR(1) process, Xt = φ1Xt−1 + θ0εt.

Then, one can restrict attention to signals of the form St = a0Xt +ψt, the value of the objective at

the solution equals

Σ0 =
θ2

0

22κ − φ2
1

,

and for all κ > 0, the noise-to-signal ratio in an optimal signal equals

σ2
ψ

a2
0

=
22κ

22κ − 1

θ2
0

22κ − φ2
1

.

Next, consider an AR(2) process, Xt = φ1Xt−1 + φ2Xt−2 + θ0εt. Propositions 1 and 2 imply

that one can restrict attention to signals of the form St = a0Xt + a1Xt−1 + ψt. The following

proposition formally states the dynamic attention principle in the AR(2) case.

Proposition 5 Suppose the variable of interest follows an AR(2) process, Xt = φ1Xt−1+φ2Xt−2+

θ0εt. Then, one can restrict attention to signals of the form St = a0Xt+a1Xt−1+ψt, and φ1, φ2 6= 0

implies a1 6= 0.

Proof. See Appendix E.

In words, if learning about the present and learning about the future are not the exact same

thing (φ2 6= 0) and the process cannot be written as overlapping AR(1)’s in a lower frequency

(φ1 6= 0), then the optimal signal weight on Xt−1 is non-zero (a1 6= 0). The proposition is proved

by showing that the first-order condition for the optimal signal weight on Xt−1 is satisfied at a1 = 0

if and only if φ1φ2 = 0.8

The next proposition formally states the dynamic attention principle in the case of news shocks.

In Macroeconomics, it is often assumed that a change in productivity can be learned about before

it actually occurs in production or that a change in fiscal policy is announced before the change

in government spending or taxes actually occurs. In this case, the shock is called a “news shock.”

A standard example is Xt = φ1Xt−1 + θ1εt−1 with φ1, θ1 6= 0. The shock is realized and can be

8The proof extends to the case of a non-stationary AR(2) process if κ is suffi ciently large so that all conditional

moments appearing in the proof are finite and well-defined. The following two inequalities ensure that this is the

case: 22κ > φ2 and
(
22κ − φ22

) [
24κ + φ22 − 22κ

(
φ21 + 2φ2

)]
> 0.
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learned about in period t − 1 but only affects the variable of interest in period t. Formally, the

variable of interest follows an ARMA(1,1) process with θ0 = 0. Propositions 1 and 2 imply that

one can restrict attention to signals of the form St = a0Xt + b0εt +ψt. The next proposition states

that the optimal signal weight on εt is always different from zero, even though Xt does not depend

on εt. The reason is that the agent would like to enter well informed into the next period.

Proposition 6 Suppose the variable of interest follows an ARMA(1,1) process, Xt = φ1Xt−1 +

θ0εt + θ1εt−1. Then, one can restrict attention to signals of the form St = a0Xt + b0εt + ψt, and

φ1 6= 0, θ0 = 0, and θ1 6= 0 implies b0 6= 0.

Proof. See Appendix F.

The proposition is again proved by showing that the first-order condition for the optimal signal

weight on εt is violated at b0 = 0 if φ1 6= 0, θ0 = 0, and θ1 6= 0.9

In sum, in a dynamic setting an agent cares about being well informed in the current period

and about entering well informed into the next period because this relaxes the agent’s attention

constraint. Beyond an AR(1) process, there is a tension between these two goals and therefore the

optimal signal is generically not St = Xt + ψt.

Examples. Figure 1 shows two solved examples of the dynamic attention choice problem. In

the top panel Xt follows an ARMA(2,1) process. In the bottom panel Xt follows an AR(2) process

whose characteristic polynomial has complex roots.

Information flow very large. To understand the dynamic attention principle, it is also useful

to consider the κ→∞ limit.

Proposition 7 As κ → ∞, the information capacity devoted to other components of uncertainty

than to Xt approaches 0, i.e., h′ → (1, 0, 0, . . .).

Proof. See Appendix G.

If the information flow is very large, then it is optimal for the agent to process information

mostly about the current optimal action Xt only. The reason is that for large information capacity,

9The proof extends to the case of a non-stationary ARMA(1,1) process if κ is suffi ciently large so that all conditional

moments appearing in the proof are finite and well-defined. The following condition ensures that this is the case:

22κ > φ21.
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in each period t the prior uncertainty about Xt is much larger than uncertainty about any of the

past states Xt−s for s > 0. Gains from processing information in models with rational inattention

increase with the level of uncertainty, and thus paying attention to the more uncertain Xt in period

t is more valuable. This holds even if information about Xt−s were useful in the future.

For large κ, posterior uncertainty is always almost zero, which translates into low prior uncer-

tainty about past states in the next period. While the agent already acquired lots of information

about the past states, he has not acquired any about the current shock εt yet, and thus uncertainty

about Xt is much larger.

5 Application to a business cycle model with news shocks

We apply the paper’s analytical results in the context of two macroeconomic models. In this section,

we consider a simple business cycle model with news shocks. Here by a “news shock”we mean a

change in productivity that can be learned about before it actually occurs in production.10 While

news shocks seem a plausible source of the business cycle, it has proven diffi cult to construct models

in which the business cycle is driven by news shocks. The key problem is that good news about

future productivity makes agents wealthier and, in a neoclassical environment, this wealth effect

increases both consumption and leisure, reducing labor input through a reduction in labor supply.

With capital predetermined and current productivity unchanged, the decrease in labor input pushes

output down.11

Rational inattention is a force pushing labor input up after a positive news shock, because

rationally inattentive firms choose not to distinguish carefully between current and future increases

in productivity and thus a news shock causes an increase in labor demand. We illustrate this point

in a simple model in which firms make a labor hiring decision subject to rational inattention and

households are hand-to-mouth consumers. In the model, rational inattention causes labor input

and output to rise following a positive news shock. To the best of our knowledge, no one has

10For simplicity, in this section we write “news shocks” instead of “news shocks about productivity.”
11The most popular model generating a boom in response to a positive news shock is Jaimovich and Rebelo (2009).

The model has three key elements: preferences that allow the modeller to parameterize the strength of short-run

wealth effects on the labor supply, variable capital utilization, and adjustment costs to investment. See Lorenzoni

(2011) for a review of the literature on news shocks.

ECB Working Paper 2007, January 2017 20



proposed this explanation before.

Model. There is a continuum of firms indexed by i ∈ [0, 1]. All firms produce the same good

using an identical technology represented by the production function

Yit = eztLαN1−α
it ,

where Yit is output of firm i in period t, Nit is labor input, and α ∈ (0, 1) is a parameter. The

owner of the firm provides an entrepreneurial input L and chooses labor input in every period.

Productivity follows the process

zt = ρzt−1 + σεt−k,

with ρ ∈ (0, 1), σ > 0, and εt ∼ i.i.d.N (0, 1). The fact that the productivity shock has a subscript

t − k means that a productivity shock drawn in period t − k affects actual productivity with a k

period delay. As a result, productivity changes can be learned about k periods in advance. When

k > 0, the productivity shock is also called a news shock.

There is a representative household. In every period, the household chooses labor supply so as

to maximize period utility
C1−γ
t − 1

1− γ − N1+ψ
t

1 +
,

subject to the budget constraint

Ct = WtNt,

where Ct is consumption, Wt is the real wage, and Nt is labor supply. The preference parameters

satisfy γ > 0 and ψ ≥ 0. For simplicity, we assume that the household cannot save. This assumption

can be relaxed. See the discussion below.

In every period, each entrepreneur makes the hiring decision under rational inattention. The

representative household makes the labor supply decision under perfect information. The labor

market is perfectly competitive, i.e., entrepreneurs and the representative household take the real

wage as given. The real wage adjusts so as to equate labor supply and labor demand

Nt =

∫ 1

0
Nitdi.

Statement of the attention choice problem. Profits of firm i in period t equal

eztLαN1−α
it −WtNit.
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The profit-maximizing labor input of firm i in period t is given by

N∗it =

[
Wt

(1− α) eztLα

]− 1
α

.

Taking logs and letting small letters denote logs of capital letters yields

n∗it =
1

α
ln [(1− α)Lα] +

1

α
(zt − wt) .

After a log-quadratic approximation to the profit function, the profit loss in the case of a deviation of

the actual labor input, nit, from the profit-maximizing labor input, n∗it, is proportional to (n∗it − nit)
2

and a firm’s optimal hiring decision given any information set Iit is nit = E [n∗it | Iit].

The attention choice problem of the entrepreneur is a special case of the problem presented in

Section 2. The entrepreneur tracks a variable of interest, here n∗it, that follows a Gaussian process.

The entrepreneur chooses how to pay attention to the variable. The signals in period t can be

about any linear combination of current and past n∗it and current and past εt. The entrepreneur

remembers all signals and aims to minimize the mean squared error, here E
[
(n∗it − E [n∗it | Iit])

2
]
.12

When the variable of interest follows a Gaussian ARMA(p,q) process, one can directly apply the

results of Sections 3-4.

We now show that a positive news shock creates a boom in the initial periods under rational

inattention, even though it has no effect on output in the initial periods under perfect information.

No output response on impact under perfect information. As a benchmark, we first

present the equilibrium under perfect information. For ease of exposition, assume 1
α ln [(1− α)Lα] =

0 and consider the log-linearized labor market clearing condition13

nt =

∫ 1

0
nitdi.

Under perfect information, the household chooses the utility-maximizing labor supply, all entrepre-

neurs choose the profit-maximizing labor input, and the labor market clearing condition reads

1− γ
+ γ

wt =
1

α
(zt − wt) .

12Recall that one can think of the agent as choosing the properties of the signal in an initial period so as to

minimize the discounted sum of future mean squared errors. After the agent has chosen the properties of the signal,

the agent receives a long sequence of signals such that the mean squared error is the same in every period and thus

the discounted sum of mean squared errors is proportional to the mean squared error in any period. See Section 2.
13The original labor market clearing condition yields the same equilibrium under perfect information.

ECB Working Paper 2007, January 2017 22



Thus, the market clearing wage equals

wt =
1
α

1−γ
ψ+γ + 1

α

zt ≡ ϕzt,

and the equilibrium labor input equals

nt =
1

α
(1− ϕ) zt.

A positive news shock has no effect on labor input and output until productivity actually increases,

because there is no reason for firms to hire more labor before productivity actually increases. A

news shock increases output with a k period delay.

A boom on impact under rational inattention. To develop intuition for the implications

of rational inattention, imagine for the moment that a measure zero of firms are subject to ra-

tional inattention and all other firms have perfect information. Since all other firms have perfect

information, the market clearing wage still equals wt = ϕzt, and thus the profit-maximizing la-

bor input equals n∗it = 1
α (1− ϕ) zt. Furthermore, suppose that innovations in productivity can

be learned about one period in advance, and thus productivity follows an ARMA(1,1) process

zt = φ1zt−1 + θ0εt + θ1εt−1 with φ1 = ρ, θ0 = 0, and θ1 = σ. Propositions 1 and 2 imply that an

entrepreneur subject to rational inattention can restrict attention to signals of the form

Sit = a0zt + b0εt + ψit,

where ψit is a noise term that follows a Gaussian white noise process. Proposition 6 implies that

b0 6= 0. Hence, an entrepreneur who optimally allocates attention chooses a one-dimensional signal

with a non-zero weight on current productivity, zt, and a non-zero weight on the news shock, εt.

Recall that the entrepreneur chooses the non-zero weight on the news shock because entering well

informed into the next period relaxes the entrepreneur’s attention constraint. The optimal signal

has the following implications for actions. On impact of a positive news shock, εt > 0, the signal

increases. Since the entrepreneur chose not to distinguish carefully between increases in current

productivity and increases in future productivity, the entrepreneur starts hiring already today.

Solving the model in the case when all firms are subject to rational inattention is slightly more

complicated, because the market clearing real wage is no longer simply equal to wt = ϕzt and

thus the profit-maximizing labor input that entrepreneurs are tracking is no longer simply equal
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to n∗it = 1
α (1− ϕ) zt. In general, the profit-maximizing labor input depends on the real wage,

which depends on the behavior of other firms. Formally, substituting the household’s optimality

condition, wt = +γ
1−γ nt, and the labor market clearing condition, nt =

∫ 1

0
nitdi, into the equation

for the profit-maximizing labor input, n∗it = 1
α (zt − wt), yields

n∗it =
1

α
zt −

1

α

+ γ

1− γ

∫ 1

0
nitdi.

Actions of different firms are strategic substitutes, because the profit-maximizing labor input is a

decreasing function of the real wage, which is an increasing function of the aggregate labor input.

To solve for the equilibrium law of motion for the profit-maximizing labor input, we employ a

guess and verify method. We guess that the profit-maximizing labor input follows an ARMA(p,q)

process. Given the guess, we apply the results in Section 3 to establish the form of an optimal

signal and the results in Section 4 to compute the optimal signal weights and the implied actions.

We then compute the actual law of motion for the profit-maximizing labor input from the last

equation. If the actual law of motion for the profit-maximizing labor input differs from our guess,

we update the guess until a fixed point is reached.

Figure 2 plots the equilibrium impulse response of aggregate labor input to a news shock as-

suming γ = 1/3, ψ = 0, α = 3/4, ρ = 0.9, σ = 0.01, and k = 8.14 Labor input rises coincident

with a positive innovation in εt, and a boom develops before productivity actually rises. Positive

news shocks produce a boom, because rationally inattentive firms choose not to distinguish care-

fully between current and future increases in productivity and thus a positive news shock causes an

increase in labor demand. For comparison, Figure 2 also shows the equilibrium labor input in the

case when entrepreneurs in all firms have perfect information. In that case, a productivity shock

drawn in period one affects labor input only in period nine.

Discussion. One can relax the model’s simplifying assumptions. For example, if one supposed

that the representative household can save and has preferences as in Greenwood, Hercowitz, and

Huffman (1988), the solution of the model would be identical for particular parameter values.

Furthermore, with standard preferences and variable capital, a news shock would have additional

effects (the reduction in labor supply due to the wealth effect after a positive news shock, and the

fall in investment to finance the rise in consumption). It is a quantitative question whether the
14We use a value of the information-processing parameter κ such that the equilibrium per period profit loss from

rational inattention, expressed as a fraction of the steady-state wage bill, is equal to 0.0001.
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effect of rational inattention identified here would be strong enough to produce an increase in hours

worked on impact of a positive news shock in that standard neoclassical setup.

6 Application to a model of price-setting

As another application, we consider the model of price-setting proposed by Woodford (2002).

Woodford supposes that monopolistically competitive firms set prices based on noisy signals about

nominal aggregate demand. He shows that in this environment a nominal disturbance can have large

and persistent real effects. His model has become a benchmark in the literature on price-setting

and in the literature on macroeconomic models with information frictions. Woodford assumes that

firms set prices based on signals of the form “nominal aggregate demand plus i.i.d. noise.”We

resolve the model with signals that are optimal from a rational inattention perspective.

Model. Woodford’s model features an economy with a continuum of firms indexed by i ∈ [0, 1].

Firm i sells good i. In every period, firm i sets the price of good i to maximize the present discounted

value of profits, and since the firm can reset the price in the next period, this is equivalent to setting

the price to maximize current profits. The price maximizing current profits in the Woodford model

can be written as

p∗it = ξqt + (1− ξ) pt, (24)

where qt is nominal aggregate demand, pt is the aggregate price level, and ξ ∈ (0, 1] is a parameter

reflecting the degree of strategic complementarity in price-setting. After a log-quadratic approxi-

mation to the profit function, the loss in profit in the case of a deviation of the actual price, pit,

from the profit-maximizing price, p∗it, is proportional to (p∗it − pit)
2 and a firm’s optimal price given

any information set Iit is therefore pit = E [p∗it | Iit].

Woodford assumes that in every period the decision-maker in firm i observes a signal about

nominal aggregate demand given by

Sit = qt + vit, (25)

where vit is a Gaussian white noise error term, distributed independently both of the history of 

fundamental disturbances and of the observation errors of all other firms. The information set of 

the decision-maker who is setting the price includes any initial information and all past signals,

Iit = Ii,0 ∪{Si1, . . . , Sit}. Nominal aggregate demand follows an exogenous stochastic process given
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by

qt = (1 + ρ) qt−1 − ρqt−2 + σεt, (26)

where ρ ∈ [0, 1) and σ > 0 are parameters and εt follows a Gaussian white noise process with unit

variance. Finally, the aggregate price level is given by the integral over all the individual prices

pt =

∫ 1

0
pitdi. (27)

It is straightforward to solve for the equilibrium of the Woodford model numerically. An object

of particular interest is the impulse response of output, yt = qt − pt, to an innovation in nominal

aggregate demand. Below we study how this impulse response changes when we relax Woodford’s

restriction that signals must be of the form “nominal aggregate demand plus i.i.d. noise.”

Statement of the attention choice problem. In the rational inattention version of the

model, firms choose the signal properties to maximize expected profit subject to the information

flow constraint. In period zero, the decision-maker in firm i solves

min
K,A,B,Σψ

E

[ ∞∑
t=1

βt (p∗it − pit)
2

]
,

where β ∈ (0, 1) is a parameter, subject to the information flow constraint (5) and

pit = E [p∗it | Iit] ,

Iit = Ii,0 ∪
{
SKi1 , . . . , S

K
it

}
,

and

SKit = A


p∗it
...

p∗i,t−M+1

+B


εt
...

εt−N+1

+ ψKit ,

where ψKit follows a Gaussian vector white noise process with variance-covariance matrix Σψ. In

words, the decision-maker aims to minimize the expected discounted sum of profit losses due to

suboptimal pricing. He understands that in every period t ≥ 1 he will set the price equal to the

conditional expectation of the profit-maximizing price and he will remember past signals. The

signal vector in period t can be K-dimensional and can be about any linear combination of current
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and past values of the profit-maximizing price and current and past values of the nominal shock.15

After the decision-maker has chosen the signal properties in period zero, he receives information

such that the conditional variance-covariance matrix of the state vector in period one given informa-

tion in period zero equals the steady-state conditional variance-covariance matrix of the state vector

in period t given information in period t − 1. The mean squared error, E
[
(p∗it − E [p∗it | Iit])

2
]
, is

then constant for all t ≥ 1. Hence, the objective simplifies to β/ (1− β) times

E
[
(p∗it − E [p∗it | Iit])

2
]
,

and this mean squared error can be evaluated using the steady-state Kalman filter. In other words,

the firms’objective equals the objective in Section 2.

No strategic complementarity in price-setting. To develop intuition for the implications

of rational inattention, it is helpful to start with the case when ξ = 1 (no strategic complementarity

in price-setting). The profit-maximizing price is then equal to nominal aggregate demand, p∗it = qt

(see equation (24)), and nominal aggregate demand follows a Gaussian AR(2) process (see equation

(26)). The results in Section 3 imply that in this case one can restrict attention to signals of the

form

S∗it = qt + a1qt−1 + ψit, (28)

where ψit follows a Gaussian white noise process.
16 Notice that assumption (25) in this case

amounts to a simple restriction a1 = 0. However, Proposition 5 implies that if ρ 6= 0 then a1 6= 0.

Recall that the decision-maker chooses the non-zero weight on qt−1 in the period t signal because

entering well informed into the next period relaxes the decision-makers’attention constraint.

To investigate to what extent Woodford’s restriction on the signals matters, we assume his

parameter values.17 Furthermore, we suppose that the information flow in the model with optimal

signals (the model with S∗it given by equation (28)) is equal to the information flow in the Woodford

model (the model with Sit given by equation (25)).18 Thus decision-makers process the same

15This decision problem is a simplified version of the decision problem in Maćkowiak and Wiederholt (2009). There

are no idiosyncratic shocks and the decision-maker does not choose the amount of attention allocated to aggregate

conditions.
16We follow Woodford in assuming that the noise term ψit is also independent across firms.
17The exception is that for the moment we set ξ = 1, whereas Woodford focuses on the case when ξ = 0.15. We

study the case of ξ = 0.15 below.
18The information flow in the Woodford model, κW , can be computed from the formula κW = (1/2) log2

(
σ2q,1/σ

2
q,0

)
,
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amount of information in both models. The only difference is that in one model decision-makers

use optimal signals, whereas in the other model decision-makers use Woodford’s restricted signals.

The top panel in Figure 3 compares the equilibrium impulse responses of output to a nominal

disturbance in the two models. Woodford’s restriction matters a lot. The real effects of a nominal

disturbance are much stronger in his model than in the model with optimal signals. With Wood-

ford’s restriction the variance of output rises by a factor of 2.5. At the same time, the marginal

value of information and the profit loss from imperfect information each increase by about 20 per-

cent. A decision-maker in the model with optimal signals uses a given amount of information as

effi ciently as possible. Consequently, in the model with optimal signals the tracking of the profit-

maximizing price is more accurate, an extra unit of information is less valuable, and a nominal

shock has weaker real effects compared with the Woodford model. Furthermore, the differences

between the two models can be sizable.

Strategic complementarity in price-setting. Now consider the case of ξ = 0.15, as assumed

in Woodford (2002), implying a significant degree of strategic complementarity in price-setting. We

guess that in equilibrium the profit-maximizing price follows an ARMA(p,q) process where p ≥ 1

and q ≥ 0 are integers. Given the guess, we apply the results in Section 3 to establish the form of

an optimal signal. For example, if the profit-maximizing price follows an ARMA(2,2) process, we

restrict attention to signals of the form

S∗it = p∗it + a1p
∗
i,t−1 + b0εt + b1εt−1 + ψit. (29)

We let the decision-maker in firm i choose the optimal signal weights (a1, b0, and b1 in the

ARMA(2,2) example) and the variance of noise σ2
ψ to maximize profits, subject to the information

flow constraint. We then obtain the aggregate price level from the relation pt =
∫ 1

0 pitdi, and we

compute the profit-maximizing price using equation (24). As before, the information flow in the

model with optimal signals is held equal to the information flow in the Woodford model.19

The bottom panel in Figure 3 compares the equilibrium impulse responses of output to a nominal

disturbance in the two models in the case of ξ = 0.15. Woodford’s restriction matters much less

where σ2q,1 is the prior variance of nominal aggregate demand and σ
2
q,0 is the posterior variance of nominal aggregate

demand, in steady state. We solve for the values of a1 and σ2ψ in the model with optimal signals by applying the

results in Section 4 and setting κ = κW .
19We verify that we cannot reduce the difference between the guessed profit-maximizing price and the actual

profit-maximizing price by adding parameters to the law of motion for p∗it.
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than with ξ = 1. With ξ = 0.15 the real effects of a nominal disturbance are only somewhat stronger

in the Woodford model than in the model with optimal signals.20 The Woodford model predicts

stronger real effects than the model with optimal signals for any value of ξ, because information

is always used less effi ciently in the former model than in the latter model. By the same token,

the marginal value of information is always greater in the Woodford model than in the model

with optimal signals. At the same time, the difference between the size of real effects in the two

models decreases as ξ falls from one to zero (as the degree of strategic complementarity in price-

setting rises). The reason is that the response of the profit-maximizing price to a nominal shock

weakens as the degree of strategic complementarity in price-setting rises. Hence, the firms’tracking

of the equilibrium profit-maximizing price improves, the marginal value of information falls, and

Woodford’s restriction on the signals becomes less harmful to the decision-makers, implying that

the difference between the size of real effects in the models diminishes.

In sum, Woodford’s restriction on the signals increases the size of real effects predicted by the

model, strongly in the case without strategic complementarity in price setting and weakly in the

case with a significant degree of strategic complementarity in price setting.

7 Conclusions

Solving dynamic rational inattention problems has become straightforward and intuitive. In the

canonical dynamic attention choice problem an optimal signal has a simple form. One can solve

for the optimal signal using the rational inattention filter, which is just the Kalman filter with the

observation equation that is optimal from the perspective of rational inattention. The resulting

behavior satisfies the dynamic attention principle, implying that the agent is learning optimally

both about the present and about the future.

20With Woodford’s restriction the variance of output, the marginal value of information, and the profit loss from

imperfect information each increase by about 5 percent.
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A Proof of Lemma 1

Let SK,t =
{
SK1 , . . . , S

K
t

}
denote the history of signals at time t and let εt = {ε1, . . . , εt} denote

the history of innovations to the variable of interest at time t. The left-hand side of the information

flow constraint (5) can be written as

lim
T→∞

1

T
I
(
Z0, ε1, . . . , εT ;SK1 , . . . , S

K
T

)
= lim

T→∞

1

T
I
(
Z0, ε

T ;SK,T
)
.

We now show that

lim
T→∞

1

T
I
(
Z0, ε

T ;SK,T
)

= lim
T→∞

[
H
(
ξT |SK,T−1

)
−H

(
ξT |SK,T

)]
.

The mutual information between two random vectors is symmetric and equals the difference

between entropy and conditional entropy. Thus

I
(
Z0, ε

T ;SK,T
)

= I
(
SK,T ;Z0, ε

T
)

= H
(
SK,T

)
−H

(
SK,T |Z0, ε

T
)
.

The chain rule for entropy implies that, ∀T ≥ τ and ∀τ ≥ 2,

H
(
SK,T

)
= H

(
SK,τ−1

)
+

T∑
t=τ

H
(
SKt |SK,t−1

)
,

and

H
(
SK,T |Z0, ε

T
)

= H
(
SK,τ−1|Z0, ε

T
)

+
T∑
t=τ

H
(
SKt |SK,t−1, Z0, ε

T
)
.

The signal SKt depends only on XM
t , ε

N
t , and ψ

K
t for given A and B. In the following, let τ =

max {M,N, 2}. For t ∈ {τ , . . . , T}, one can compute XM
t and εNt from Z0, ε

T , and one can compute

XM
t and εNt from the vector ξt defined in Lemma 1. Hence, for t ∈ {τ , . . . , T},

H
(
SKt |SK,t−1, Z0, ε

T
)

= H
(
ψKt
)

= H
(
SKt |SK,t−1, ξt

)
.

Collecting results yields that, ∀T ≥ τ ,

I
(
Z0, ε

T ;SK,T
)

= H
(
SK,τ−1

)
−H

(
SK,τ−1|Z0, ε

T
)

+
T∑
t=τ

[
H
(
SKt |SK,t−1

)
−H

(
SKt |SK,t−1, ξt

)]
.

Next, it follows from the definition and the symmetry of mutual information that

H
(
SKt |SK,t−1

)
−H

(
SKt |SK,t−1, ξt

)
= I

(
SKt ; ξt|SK,t−1

)
= H

(
ξt|SK,t−1

)
−H

(
ξt|SK,t−1, SKt

)
.
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Combining results yields that, ∀T ≥ τ ,

I
(
Z0, ε

T ;SK,T
)

= H
(
SK,τ−1

)
−H

(
SK,τ−1|Z0, ε

T
)

+
T∑
t=τ

[
H
(
ξt|SK,t−1

)
−H

(
ξt|SK,t

)]
. (30)

Finally, we show in Appendix B that the following limit exists

lim
T→∞

[
H
(
ξT |SK,T−1

)
−H

(
ξT |SK,T

)]
.

Equation (30) and Cesaro mean then imply

lim
T→∞

1

T
I
(
Z0, ε

T ;SK,T
)

= lim
T→∞

[
H
(
ξT |SK,T−1

)
−H

(
ξT |SK,T

)]
. (31)
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B Proof of Proposition 1

We now show that if a signal vector does not have the property stated in Proposition 1, then there

exists another signal vector that yields the same value of the objective with strictly less information

flow.

First, the signal (2) has the following state-space representation (following the notation in

Hamilton (1994), Chapter 13)

ξt+1 = Fξt + vt+1, (32)

SKt = G′ξt + ψKt . (33)

Here the vector ξt contains the same elements as the vector ξt defined in Lemma 1 but with a

slightly different ordering for the case of q > 0

ξt =


(
Xt, . . . , Xt−max{M,N+p}+1

)′ if q = 0(
εt, . . . , εt−q+1, Xt, . . . , Xt−max{M,N+p−q}+1

)′ if q > 0
.

The different ordering simplifies the exposition below. The matrix F is a square matrix and the

length of the column vector vt equals the length of the column vector ξt. In the AR(p) case and

the white noise case (i.e., q = 0), the first element of vt+1 equals θ0εt+1 and the first row of the

matrix F ensures that the first row of equation (32) equals the law of motion for Xt. The next

max {M,N + p− q} − 1 elements of vt+1 equal zero and the next max {M,N + p− q} − 1 rows of

the matrix F have a one just left of the main diagonal and zeros everywhere else. In the ARMA(p,q)

case and the MA(q) case with q > 0 (i.e., q > 0), the vector vt+1 has q additional elements on top

and the matrix F has q additional rows on top. The first additional element of vt+1 equals εt+1

and the remaining additional elements of vt+1 equal zero. The first additional row of the matrix F

contains only zeros and the remaining additional rows of the matrix F have a one just left of the

main diagonal and zeros everywhere else. Finally, the matrix G is the matrix for which equation

(33) equals equation (2). Such a matrix exists because XM
t and εNt can be computed from ξt.

Second, let Σt|t−1 denote the conditional variance-covariance matrix of ξt given S
K,t−1 and let

Σt|t denote the conditional variance-covariance matrix of ξt given S
K,t. Furthermore, let Σ1 and

Σ0 denote limt→∞Σt|t−1 and limt→∞Σt|t, respectively. Recall that Xt follows a stationary process.

It follows from Propositions 13.1-13.2 in Hamilton (1994) that limt→∞Σt|t−1 and limt→∞Σt|t exist
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and are given by

Σ1 = F
[
Σ1 − Σ1G

(
G′Σ1G+R

)−1
G′Σ1

]
F ′ +Q,

Σ0 = Σ1 − Σ1G
(
G′Σ1G+R

)−1
G′Σ1,

where Q denotes the variance-covariance matrix of the innovation in the state equation (32) and R

denotes the variance-covariance matrix of the innovation in the observation equation (33).

Third, one can express the information flow constraint (5) in terms of the matrices Σ1 and Σ0.

According to Lemma 1 the information flow constraint (5) is equivalent to

lim
T→∞

[
H
(
ξT |SK,T−1

)
−H

(
ξT |SK,T

)]
≤ κ. (34)

Conditional normality implies that

H
(
ξT |SK,T−1

)
−H

(
ξT |SK,T

)
=

1

2
log2

(
det ΣT |T−1

det ΣT |T

)
.

Hence, the information flow constraint (5) is equivalent to

1

2
log2

(
det Σ1

det Σ0

)
≤ κ. (35)

Fourth, let us split the vector ξt into two sub-vectors, denoted ξ
up
t and ξlowt . The vector ξupt is

defined as

ξupt =



Xt if p = 0 and q = 0

(Xt, . . . , Xt−p+1)′ if p > 0 and q = 0

(εt, . . . , εt−q+1, Xt)
′ if p = 0 and q > 0

(εt, . . . , εt−q+1, Xt, . . . , Xt−p+1)′ if p > 0 and q > 0

.

The vector ξlowt contains the remaining elements of ξt. Note that the conditional variance-covariance

matrix of ξupt given SK,t is the upper-left (d× d) sub-matrix of Σt|t, where d is the number of

elements of the vector ξupt . Furthermore, note that the objective (4) is simply an element of the

upper-left (d× d) sub-matrix of Σ0. Moreover, the information flow constraint (34) can be written

as

lim
T→∞

[
H
(
ξupT |S

K,T−1
)
−H

(
ξupT |S

K,T
)

+H
(
ξlowT |SK,T−1, ξupT

)
−H

(
ξlowT |SK,T , ξ

up
T

)]
≤ κ.
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Next, compare two signal vectors with M > p and N > q that yield the same upper-left (d× d)

sub-matrix of Σ0. One signal vector has the property

∀j > p : Aij = 0

∀j > q : Bij = 0
, (36)

while the other signal vector does not have this property. Both signal vectors imply the same value

of the objective (4), because the objective is an element of the upper-left (d× d) sub-matrix of Σ0.

Furthermore, both signal vectors generate the same limit

lim
T→∞

[
H
(
ξupT |S

K,T−1
)
−H

(
ξupT |S

K,T
)]
,

because both signal vectors yield the same upper-left (d× d) sub-matrix of Σ0 by assumption and

they also generate the same upper-left (d× d) sub-matrix of Σ1, because Xt follows an ARMA(p,q)

process. Finally, the difference

H
(
ξlowT |SK,T−1, ξupT

)
−H

(
ξlowT |SK,T , ξ

up
T

)
is non-negative, since conditioning weakly reduces entropy, and it equals zero if and only if condition

(36) is satisfied. Hence, both signal vectors imply the same value of the objective, but the second

signal vector is associated with strictly more information flow.

Fifth, we show that for any signal vector violating condition (36) there exists a signal vec-

tor satisfying condition (36) that yields the same upper-left (d× d) sub-matrix of Σ0. For any

variance-covariance matrices Σ̃1 and Σ̃0, there exists a signal generating the posterior variance-

covariance matrix Σ̃0 from the prior variance-covariance matrix Σ̃1 if and only if Σ̃1− Σ̃0 is positive

semi-definite. Consider a signal
{
K, Â, B̂, Σ̂

}
violating condition (36) that yields the variance-

covariance matrices Σ1 and Σ0. Since Σ0 is generated from Σ1 by the signal, then Σ1 − Σ0 must

be positive semi-definite. By Sylvester’s criterion (Bazaraa et al., 2013), the upper-left (d× d)

sub-matrix of Σ1 − Σ0 is positive semi-definite, too. Using the statement above, this implies that

there exists a signal {K,A,B,Σψ} satisfying condition (36) that generates the upper-left (d× d)

sub-matrix of Σ0 from the upper-left (d× d) sub-matrix of Σ1.
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C Proof of Proposition 2

The proof consists of two steps. Let ξt denote a column vector containing the variables given in

Proposition 1. For example, ξt =
(
Xt, . . . , Xt−(p−1)

)′ in the AR(p) case and ξt =
(
Xt, εt, . . . , εt−(q−1)

)′
in the MA(q) case. In the first step, we show that without loss in generality one can restrict at-

tention to signal vectors SKt = G′ξt + ψKt with lower triangular matrix G and diagonal, positive

definite precision matrix Σ−1
ψ . In the second step, we show that any optimal signal vector of this

form has the property that all rows of G′ apart from the first one contain only zeros.

First, without loss in generality one can restrict attention to signal vectors S̃Kt = ξt + ψ̃
K
t with

positive semi-definite precision matrix Σ−1

ψ̃
. Bayesian updating implies

Σ−1
0 = Σ−1

ψ̃
+ Σ−1

1 ,

where Σ1 is the prior variance-covariance matrix of ξt and Σ0 is the posterior variance-covariance

matrix of ξt. Objective (4) and constraint (5) depend only on Σ1 and Σ0. The objective is

an element of Σ0, and the information flow is given by the ratio of determinants of Σ1 and Σ0.

Therefore, it suffi ces to show that for any Σ1 and Σ0 such that Σ1 − Σ0 is positive semi-definite,

there exists a positive semi-definite precision matrix Σ−1

ψ̃
such that

Σ−1

ψ̃
= Σ−1

0 − Σ−1
1 .

Note that if Σ1 −Σ0 is positive semi-definite, then so is Σ−1
0 −Σ−1

1 . Signals of the given form thus

suffi ce to reproduce any feasible Σ1 and Σ0.

Next, for any signal vector S̃Kt = ξt + ψ̃
K
t with positive semi-definite precision matrix Σ−1

ψ̃
,

there exists a signal vector SKt = G′ξt + ψKt with lower triangular matrix G and diagonal, positive

definite precision matrix Σ−1
ψ that contains the same information. In the case of a positive definite

precision matrix Σ−1

ψ̃
, the triangular factorization of Σ−1

ψ̃
implies that

Σ−1

ψ̃
= LDL′,

where L is a lower triangular matrix with ones along the principal diagonal and D is a diagonal

matrix with Dii > 0 for all i. The matrix L′ is invertible. Multiplying the original signal vector

S̃Kt by L′ yields the new signal vector SKt = L′ξt + ψKt with diagonal precision matrix D, and

multiplying the new signal vector SKt by L′−1 recovers the original signal vector S̃Kt . Hence, the
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two signal vectors contain the same information. When Σ−1

ψ̃
is not positive definite, some signals

have zero precision. In this case, one can define a new signal vector, which contains only the signals

with positive precision, construct a new signal vector as before, and note that the new signal vector

is again of the form SKt = G′ξt + ψKt , where now some rows of G contain only zeros.

Second, thus far we have shown that without loss in generality one can restrict attention to

signal vectors SKt = G′ξt + ψKt with lower triangular matrix G and diagonal, positive definite

precision matrix Σ−1
ψ . We now show that any optimal signal vector of this form has the property

that all rows of G′ apart from the first row contain only zeros.

In the case when Xt follows an AR(1) process or a white noise process, we have ξt = Xt and

SKt = G′ξt + ψKt is a one-dimensional signal. Next, consider the case when Xt follows an AR(p)

process with p > 1. In this case, we have ξt =
(
Xt, . . . , Xt−(p−1)

)′ and the first signal is on a linear
combination of Xt, . . . , Xt−(p−1), the second signal is on a linear combination of Xt−1, . . . , Xt−(p−1),

the third signal is on a linear combination of Xt−2, . . . , Xt−(p−1), and the pth signal is on Xt−(p−1).

Note that all signals apart from the first signal are only about the past. We now show that

any optimal signal vector of the form SKt = G′ξt + ψKt must have the property that all rows of

G′ apart from the first row contain only zeros. Suppose that the second row of G′ contained a

non-zero element. Generate a new matrix G̃′ by shifting the elements of the second row of the

original matrix G′ to the left. In words, the signal on Xt−1, . . . , Xt−(p−1) is replaced by a signal on

Xt, . . . , Xt−(p−2) in every period. The only change in the history of signals SK,T =
{
SK1 , . . . , S

K
T

}
is

that the signal on XT , . . . , XT−(p−2) is added and the signal on X0, . . . , X−p+2 is lost. This change

in the matrix G′ reduces the value of the loss function without affecting information flow. The loss

function is the limit as T →∞ of the conditional variance of XT given SK,T , lim
T→∞

V ar
(
XT |SK,T

)
.

The loss of the signal on X0, . . . , X−p+2 does not affect the value of this loss function, while the

addition of the signal on XT , . . . , XT−(p−2) reduces the value of this loss function. The information

flow equals

lim
T→∞

[
H
(
XT , . . . , XT−(p−1)|SK,T−1

)
−H

(
XT , . . . , XT−(p−1)|SK,T

)]
.

Using the chain rule for entropy the information flow can be written as

lim
T→∞

 H
(
XT−1, . . . , XT−(p−1)|SK,T−1

)
+H

(
XT |XT−1, . . . , XT−(p−1), S

K,T−1
)

−H
(
XT , . . . , XT−(p−2)|SK,T

)
−H

(
XT−(p−1)|XT , . . . , XT−(p−2), S

K,T
)
 .
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The limit of the first term equals the limit of the third term, and thus information flow equals

lim
T→∞

[
H
(
XT |XT−1, . . . , XT−(p−1), S

K,T−1
)
−H

(
XT−(p−1)|XT , . . . , XT−(p−2), S

K,T
)]
.

Recall that the only change in the history of signals SK,T =
{
SK1 , . . . , S

K
T

}
is that the signal on

XT , . . . , XT−(p−2) is added and the signal on X0, . . . , X−p+2 is lost. The addition of the signal on

XT , . . . , XT−(p−2) to SK,T does not change the second term. Similarly, the addition of the signal

on XT−1, . . . , XT−(p−1) to SK,T−1 does not change the first term. Hence, information flow remains

unchanged. The same argument can be repeated for the third row to the pth row of the matrix G′.

It follows that any optimal signal vector of the form SKt = G′ξt +ψKt must have the property that

the second row to the pth row of the matrix G′ contain only zeros.

When the variable of interest follows an MA(q) process with q > 0, the proof needs to be

modified slightly, because the vector ξt =
(
Xt, εt, . . . , εt−(q−1)

)′ contains more than one element
that depends on the current shock εt: the variable of interest, Xt, and the shock itself, εt. In this

case, one can go through the same two steps with the state vector ξ̂t =
(
εt, . . . , εt−(q−1), εt−q

)′
instead of the state vector ξt =

(
Xt, εt, . . . , εt−(q−1)

)′: (i) without loss in generality one can restrict
attention to signal vectors SKt = G′ξ̂t + ψKt with lower triangular matrix G and diagonal, positive

definite precision matrix Σ−1
ψ , and (ii) any optimal signal vector of this form has the property that

all rows of G′ apart from the first row contain only zeros. To complete the proof, one only needs to

note that any one-dimensional signal on ξ̂t can also be written as a one-dimensional signal on ξt.

Similarly, when the variable of interest follows an ARMA(p,q) process, the proof needs to be

modified slightly, because the vector ξt =
(
Xt, . . . , Xt−(p−1), εt, . . . , εt−(q−1)

)′ contains more than
one element that depends on the current shock εt: the variable of interest, Xt, and the shock itself,

εt. In this case, one can go through the same two steps with the state vector

ξ̂t =


(
Xt, . . . , Xt−(p−1), Xt − θ0εt, εt−1, . . . , εt−(q−1)

)′ if θ0 6= 0(
Xt+1, Xt, . . . , Xt−(p−1), εt−1, . . . , εt−(q−1)

)′ if θ0 = 0
.

The state vector ξ̂t has the property that only one element depends on the current shock: Xt if

θ0 6= 0 and Xt+1 if θ0 = 0. After going through the same two steps as before with the state

vector ξ̂t, one only needs to note that any one-dimensional signal on ξ̂t can also be written as a

one-dimensional signal on ξt.
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D The matrices Z ij and Z l

Let 1ij denote a (d× d) matrix whose i, j-element equals one and whose other elements equal zero.

Let 1l denote a (d× 1) vector whose lth element equals one and whose other elements equal zero.

It is straightforward to show that

Zij = 1ij − F1ijF ′ −
(
1− 2−2κ

)
(h′Σ1h)2 h′1ijhFΣ1hh

′Σ1F
′

+

(
1− 2−2κ

)
h′Σ1h

F
[
1ijhh′Σ1 + Σ1hh

′1ij
]
F ′,

and

Z l = −
(
1− 2−2κ

)
(h′Σ1h)2

[(
1l
)′

Σ1h+ h′Σ1

(
1l
)]
FΣ1hh

′Σ1F
′

+

(
1− 2−2κ

)
h′Σ1h

F

[
Σ1

(
1l
)
h′Σ1 + Σ1h

(
1l
)′

Σ1

]
F ′.
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E Proof of Proposition 5

Equation (22) at p = 2 and a1 = 0 reads

Z11dΣ1,11

da1
+ Z12dΣ1,12

da1
+ Z21dΣ1,21

da1
+ Z22dΣ1,22

da1
+ Z2 = 0, (37)

with

Z11 =

 1− φ2
12−2κ − φ2

2

(
1− 2−2κ

) Σ1,12Σ1,21
Σ21,11

−φ12−2κ

−φ12−2κ −2−2κ

 ,
Z12 =

 −φ1φ22−2κ + φ2
2

(
1− 2−2κ

) Σ1,21
Σ1,11

1

−φ22−2κ 0

 ,
Z21 =

 −φ1φ22−2κ + φ2
2

(
1− 2−2κ

) Σ1,12
Σ1,11

−φ22−2κ

1 0

 ,
Z22 =

 −φ2
2 0

0 1

 ,
Z2 =

(
1− 2−2κ

) Σ1,11Σ1,22 − Σ1,12Σ1,21

Σ1,11

 2φ1φ2 + φ2
2

Σ1,12+Σ1,21
Σ1,11

φ2

φ2 0

 .
Equation (21) at p = 2 and a1 = 0 implies

Σ1,22 = 2−2κΣ1,11, (38)

Σ1,12 = Σ1,21 =
φ1

22κ − φ2

Σ1,11, (39)

Σ1,11 =
θ2

0

1− 2−2κ
(
φ2

1 + φ2
2

)
− 2−2κ 2φ21φ2

22κ−φ2
+

(1−2−2κ)φ21φ
2
2

(22κ−φ2)2

. (40)

In the case of a stationary AR(2) process, the denominators in equations (39) and (40) are positive.

In the case of a non-stationary AR(2) process, these denominators are positive if and only if

22κ − φ2 > 0 and
(
22κ − φ2

2

) [
24κ + φ2

2 − 22κ
(
φ2

1 + 2φ2

)]
> 0.

Equation (37) is a system of four linear equations in dΣ1,11
da1

, dΣ1,12
da1

, dΣ1,21
da1

, and dΣ1,22
da1

. Solving this

system for dΣ1,22
da1

and using equations (38)-(40) yields

dΣ1,22

da1
= −2φ1φ2

(
1− 2−2κ

)
Σ1,11

(22κ − φ2)2︸ ︷︷ ︸
>0

.

Hence, in the AR(2) case, the first-order condition (23) is satisfied at a1 = 0 if and only if φ1φ2 = 0.
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F Proof of Proposition 6

Equation (22) at p = 1, q = 1, and b0 = 0 reads

Z11dΣ1,11

db0
+ Z12dΣ1,12

db0
+ Z21dΣ1,21

db0
+ Z22dΣ1,22

db0
+ Z2 = 0,

with

Z11 =

 1− φ2
12−2κ − θ2

1

(
1− 2−2κ

) Σ1,12Σ1,21
Σ21,11

0

0 0

 ,
Z12 =

 −φ1θ12−2κ + θ2
1

(
1− 2−2κ

) Σ1,21
Σ1,11

1

0 0

 ,
Z21 =

 −φ1θ12−2κ + θ2
1

(
1− 2−2κ

) Σ1,12
Σ1,11

0

1 0

 ,
Z22 =

 −θ2
1 0

0 1

 ,
and

Z2 =
(
1− 2−2κ

) Σ1,11Σ1,22 − Σ1,12Σ1,21

Σ1,11

 2φ1θ1 + θ2
1

Σ1,12+Σ1,21
Σ1,11

0

0 0

 .
These equations imply

dΣ1,12

db0
=
dΣ1,21

db0
=
dΣ1,22

db0
= 0,

and

0 =

[
1− φ2

12−2κ − θ2
1

(
1− 2−2κ

) Σ1,12Σ1,21

Σ2
1,11

]
dΣ1,11

db0

+
(
1− 2−2κ

) Σ1,11Σ1,22 − Σ1,12Σ1,21

Σ1,11

[
2φ1θ1 + θ2

1

Σ1,12 + Σ1,21

Σ1,11

]
.

Equation (21) at p = 1, q = 1, and b0 = 0 reads

Σ1 =

 φ2
12−2κΣ1,11 + φ1θ12−2κ (Σ1,12 + Σ1,21) + θ2

1

[
Σ1,22 −

(
1− 2−2κ

) Σ1,21Σ1,12
Σ1,11

]
0

0 0

+

 θ2
0 θ0

θ0 1

 .
When θ0 = 0, the last equation implies

Σ1,22 = 1,Σ1,12 = Σ1,21 = 0,Σ1,11 =
θ2

1

1− φ2
12−2κ

,
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and the previous equation can be written as

dΣ1,11

db0
= −

(
1− 2−2κ

)(
1− φ2

12−2κ
)2φ1θ1. (41)

Furthermore, in the case of p = 1 and q = 1, equation (20) reads Σ0,11 Σ0,12

Σ0,21 Σ0,22


=

 Σ1,11 −
(
1− 2−2κ

) (Σ1,11+b0Σ1,12)(Σ1,11+b0Σ1,21)

Σ1,11+b0Σ1,12+b0Σ1,21+b20Σ1,22
Σ1,12 −

(
1− 2−2κ

) (Σ1,11+b0Σ1,12)(Σ1,12+b0Σ1,22)

Σ1,11+b0Σ1,12+b0Σ1,21+b20Σ1,22

Σ1,21 −
(
1− 2−2κ

) (Σ1,21+b0Σ1,22)(Σ1,11+b0Σ1,21)

Σ1,11+b0Σ1,12+b0Σ1,21+b20Σ1,22
Σ1,22 −

(
1− 2−2κ

) (Σ1,21+b0Σ1,22)(Σ1,12+b0Σ1,22)

Σ1,11+b0Σ1,12+b0Σ1,21+b20Σ1,22

 .
The upper-left equation implies that the derivative of Σ0,11 with respect to b0 at the point b0 = 0

equals
dΣ0,11

db0
= 2−2κdΣ1,11

db0
. (42)

It follows from equations (41) and (42) that in the ARMA(1,1) case with φ1 6= 0, θ1 6= 0, and

θ0 = 0 the optimal signal weight on εt is always non-zero.
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G Proof of Proposition 7

Let h be a vector of signal weights and Σ0,Σ1 denote posterior and prior variance-covariance

matrices that are solutions to Kalman filter equations (19)-(20) for h. Let ĥ = (1, 0, 0, ...), i.e., it

represents a strategy that puts zero weights on past states; and let Σ̂0, Σ̂1 denote the corresponding

solutions to (19)-(20). Note that if κ approaches infinity, then uncertainty and thus losses under ĥ

approach zero, and thus so must also losses from any optimal strategy.

Under any h, the agent allocates information capacity (κ − κ′) to the current optimal action

Xt, while κ′ ≥ 0 is devoted to components of the uncertainty that are orthogonal to uncertainty

about Xt. Under ĥ, all of the capacity κ is devoted to Xt, i.e., κ′ = 0.

The Kalman filter equation (20) for the vector of weights h implies:

Σ1,1
0 = 2−2(κ−κ′)

(
θ2

0 +
(
FΣ0F

′)1,1) , (43)

where M1,1 denotes the 1-1 element of a matrix M . In (43), we used the fact that devoting an

amount C of information capacity to tracking a normally distributed random variable of variance

σ2 implies posterior variance of σ22−2C . Similarly for the weights ĥ, we get:

Σ̂1,1
0 = 2−2κ

(
θ2

0 +
(
F Σ̂0F

′
)1,1

)
. (44)

Now, we can express the difference between expected losses from an optimal h and ĥ.

Σ1,1
0 − Σ̂1,1

0 = 2−2κ

[
(22κ′ − 1)θ2

0 +

(
22κ′

(
FΣ0F

′)1,1 − (F Σ̂0F
′
)1,1

)]
. (45)

For any κ, if h is optimal, then the RHS of (45) must always be less or equal to zero.

We will show by contradiction that as κ → ∞, in a sequence of optimal h for such levels of

information flows, κ′ approaches zero. Let us thus assume that κ′ does not approach zero. In this

case, there exists a lower bound m, such that there always exists an arbitrarily large κ for which

(22κ′ − 1)θ2
0 > m. Moreover, we will show that

(
22κ′ (FΣ0F

′)1,1 −
(
F Σ̂0F

′
)1,1

)
, the second term

in the bracket on the RHS of (45), is positive or approaches zero. Therefore, the RHS of (45) is for

any such κ positive, which implies that h is suboptimal to h∗, which is a contradiction.

First, the term 22κ′ (FΣ0F
′)1,1 is positive. Second,

(
F Σ̂0F

′
)1,1

approaches zero as κ → ∞.(
F Σ̂0F

′
)1,1

is the part of prior uncertainty about Xt that is driven by all past shocks, excluding

the current shock εt. If the agent did not pay any attention to any shock, this variance would be
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equal to some σ2
tot, which is finite, because Xt follows a stationary process. Since the agent devotes

under ĥ information capacity of exactly κ to each shock, then(
F Σ̂0F

′
)1,1

= 2−2κσ2
tot,

which approaches zero as κ→∞.

Putting this together implies that in a sequence of optimal strategies, κ′ must approach zero,

i.e., the agent does not resolve any uncertainty beyond that about Xt. Otherwise there would

always exist an arbitrarily large κ for which the RHS of (45) would be positive, and thus h would

not be an optimal strategy, which is a contradiction.
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[7] Máckowiak, Bartosz, and Mirko Wiederholt (2015). “Business Cycle Dynamics under Rational

Inattention,”Review of Economic Studies, 82(4), 1502-1532.

[8] Paciello, Luigi, and Mirko Wiederholt (2014). “Exogenous Information, Endogenous Informa-

tion, and Optimal Monetary Policy,”Review of Economic Studies, 81(1), 356-388.

[9] Sims, Christopher A. (1998). “Stickiness,” Carnegie-Rochester Conference Series on Public

Policy, 49(1), 317-356.

[10] Sims, Christopher A. (2003). “Implications of Rational Inattention,” Journal of Monetary

Economics, 50(3), 665-690.

[11] Sims, Christopher A. (2010). “Rational Inattention and Monetary Economics,” in Handbook

of Monetary Economics, Volume 3, edited by Benjamin M. Friedman and Michael Woodford,

155-181. Elsevier.

ECB Working Paper 2007, January 2017 44



[12] Steiner, Jakub, Colin Stewart, and Filip Matějka (2015). “Rational Inattention Dynamics:
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