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Abstract

In this paper, we develop an agent-based multi-layered interbank net-
work model based on a sample of large EU banks. The model allows for
taking a more holistic approach to interbank contagion than is standard
in the literature. A key finding of the paper is that there are material
non-linearities in the propagation of shocks to individual banks when tak-
ing into account that banks are related to each other in various market
segments. The contagion effects when considering the shock propaga-
tion simultaneously across multiple layers of interbank networks can be
substantially larger than the sum of the contagion-induced losses when
considering the network layers individually. In addition, a bank “systemic
importance” measure based on the multi-layered network model is devel-
oped and is shown to outperform standard network centrality indicators.
The finding of non-linear contagion effects when accounting for the inter-
action between the different layers of banks’ interlinkages have important
policy implications. For example, it provides an argument for separating
banks’ trading activities from their other intermediation activities.
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Non-technical summary

In this paper, we develop an agent-based multi-layered interbank
network model based on a sample of large EU banks. The model
allows for taking a more holistic approach to interbank contagion
than is standard in the literature, where bank-to-bank spillover ef-
fects are typically confined to specific segments. However, in reality
banks are interrelated in several dimensions of their business activi-
ties. The basic notion promoted in the paper is that unless contagion
risk across the many layers of interrelations between banks are taken
into account, it is likely that contagion effects will be substantially
underestimated.

Specifically, in this paper we consider three different layers of
interbank relationships. These include a network of short-term in-
terbank loans (i.e. less than 3-month maturity) to reflect funding
risk and a network of longer-term bilateral exposures (i.e. above
3-month maturity) to reflect counterparty risk. In addition, we con-
sider a third network layer of common exposures in banks’ securities
portfolios where contagion can spread when one bank is forced to
sell those securities that may give rise to sharp revaluation effects.
This last layer aims at capturing market risk.

On top of the multi-layered system we put an agent-based model
where agents can interact with each other through the network struc-
ture. The introduction of agents enables us to investigate specific
network structures in combination with plausible bank behaviors.
In particular, in the model banks only adjust their balance sheets
when endogenous or exogenous shocks bring their liquidity or their
risk-weighted capital ratio below the minimum requirements.

Our dataset include a sample of 50 large EU banks. For each
bank, we include information about capital, short-term and long-
term interbank borrowing, deposits, short-term and long-term in-
terbank loans, aggregate securities holdings, and cash. We do not
have data on individual banks bilateral exposures, neither on the
details of financial securities portfolios. Instead, we use this uncer-
tainty as degree of freedom of the model, in order to investigate
which multi-layered network structures are particularly prone to a
systemic breakdown.

A key finding of the paper is that there are material non-linearities
in the propagation of shocks to individual banks when taking into
account that banks are related to each other in various market seg-
ments. In a nutshell, the contagion effects when considering the
shock propagation simultaneously across multiple layers of interbank
networks can be substantially larger than the sum of the contagion-
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induced losses when considering the network layers individually. In
addition, a bank “systemic importance” measure based on the multi-
layered network model is developed and is shown to outperform
standard network centrality indicators.

The finding of non-linear contagion effects when accounting for
the interaction between the different layers of banks’ interlinkages
have important policy implications. For example, it provides an
argument for separating banks’ trading activities from their other
intermediation activities.
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1 Introduction

During the financial crisis that emerged in 2008 a large part of the
global financial system came under stress with severe repercussions
on the real economy.

A robust financial system should not amplify the propagation of
idiosyncratic (or “local”) shocks to other parts of the system and
ultimately to the real economy. In this paper, systemic risk exactly
refers to the possibility that the financial system is in a configu-
ration which makes it particularly prone to global breakdowns in
case of an initial, local shock. The reasons driving the system to
such unstable and fragile configurations are probably rooted in the
duality among local and global properties of the financial system.
As a matter of fact, each financial institution takes actions with the
aim of maximizing its own profits and interests, while the impact of
those actions on the stability of the system as a whole are hardly
taken into account. Moreover, as we will show in this paper, also if
banks were willing to minimize systemic risk when they take deci-
sions, they would need to have sufficient information regarding the
financial situations of the other banks, including the exposures each
bank have on all the others. As an example, one can consider the
direct exposures in an interbank market. If one bank wants to eval-
uate the riskiness associated with a loan to another bank, it should
be able to know the exposures of its counterparty, which probability
of default depends on its own counterparties, and so on. No bank is
able to peer so deeply into the interbank credit network to evaluate
the probability of defaults due to contagion effects.

A crucial role in ensuring financial stability is therefore played
by information. If the ultimate goal is to reduce systemic risk, it
is necessary to have a global view of the financial system in order
to identify and monitor possible sources and channels of contagion.
A robust framework for monitoring and assessing financial stability,
and for managing it with interventions able to prevent the system
from entering into critical configurations, must be able to evaluate
the continuously evolving structure of the financial system.

Another important lesson emerging from the recent financial cri-
sis that we try to account for in this paper is that the possible sources
of systemic instability are multiple. For instance, direct bilateral ex-
posures can create domino effects and propagate idiosyncratic (or
local) shocks to the wider (global) financial system. In addition,
institutions can be forced to sell part of their security portfolios.
This can lead to strong asset price declines and can transmit losses
through banks with common exposures and overlapping portfolios.
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Furthermore, news about a firm’s assets can signal that others with
similar assets may also be distressed and thus create widespread
market uncertainty. Moreover, the sudden interruption of a service
provided by a bank to the financial system can constitute a threat in
case other banks are not able to immediately substitute it. When all
those dynamics work together, the result can be critical, although
the initial shock was comparably small.

Against this background, the aim of this paper is to study sys-
temic risk in highly interconnected financial systems. A natural way
to represent and study an interbank market is network theory, nowa-
days commonly used in finance. In order to encapsulate the different
kinds of possible connections among banks, we use a multi-layered
network model. A multi-layered network is a system where the same
set of nodes belong to different layers, and each layer is characterized
by its own kind of edge (representing a particular kind of financial
connection), by its own topology (so each node may have different
neighbors in different layers), and its own rules for the propagation
of eventual shocks. This holistic view of the financial system should
enable us to study systemic risk in a more encompassing perspec-
tive, than the typical single-layered network structures focusing on
individual segments.

On top of the multi-layered system we put an agent-based model
where agents can interact with each other through the network
structure. The standard approach in the literature to study sys-
temic risk using network theory represents banks as passive entities
(the nodes of the network) connected to each other by some kind
of financial contract, generally being interbank loans (the edges of
the network).! Those kinds of models are good at estimating the
resilience of particular network structures against shocks, but they
lack real dynamic effects, since shocks propagate through the system
without incorporating the (likely) reaction of banks to those shocks.
The introduction of agents enable us to investigate specific network
structures in combination with a plausible bank behavior. In partic-
ular, in our model banks will only adjust their balance sheets when
endogenous or exogenous shocks bring their liquidity or their risk-
weighted capital ratio below the minimum requirements. In fact, if
we assume that prior to the shock the system was in equilibrium,
banks would just try to keep the same structure of their balance
sheets also during the propagation of the shock.

The failure of a financial institution usually implies several reper-
cussions on the system. The liquidation of a failed bank can push

1A pioneering work in this direction was initially proposed by Nier et al. (2009), while a
summary of the results coming from this branch of literature can be found in Upper (2011).
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prices down, its counterparts can book losses from direct exposures,
the financial services provided by that bank cannot always be re-
placed, at least not immediately, and the combination of such re-
actions can significantly amplify shocks and lead to dangerous spi-
rals which could potentially collapse a substantial part of the finan-
cial system (Brunnermeier (2009)). The complete dynamics of such
events is difficult to capture with analytical models and from this
perspective an agent-based model is more suitable, since it enables
studying also systems out of equilibrium.

The agent-based model combined with the multi-layered network
representation of the financial system is subsequently used to design
measures for the systemic importance of each bank in the system.
Those measures rely on information regarding direct and indirect
interbank connections, which can be inferred from network theory,
and banks’ balance sheet information. The basic notion is that stan-
dard network centrality measures alone cannot explain the systemic
importance of individual financial institutions, since the high level
of heterogeneity in banking systems can bring central capitalized
nodes to stabilize the system, whereas network measures would just
judge nodes depending on their centrality. Instead, it is necessary
to combine information regarding the balance sheet structure of in-
stitutions with measures of centrality in order to understand the
impact of each bank failure on the system.

This paper is organized as follows: section 2 reviews the main
literature linked to our work, highlighting both the contributions
in the multi-layered network theory and the agent-based interbank
models; section 3 introduces the multi-layered interbank market and
explains how the structure is calibrated on a real dataset; section
4 explains the model we use for investigating systemic risk; section
5 presents details about the implementation of the model and the
results from our simulation engine; section 6 introduces our measures
for the systemic importance banks, and shows how the measures can
be used to monitor systemic risk in the system; section 7 concludes
and provides some policy implications.

2 Literature Review

In the past years, especially after the last financial crisis, a large
amount of studies have emerged analyzing the financial system,
and in particular the banking sector, from a network perspective.
An early, seminal contribution to this literature is Allen and Gale
(2000). Starting from the model of Diamond and Dybvig (1983),
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the authors introduce an interbank liquidity market which enables
banks to insure each other against liquidity shocks. Although in nor-
mal conditions such an interbank market can improve the stability
of the financial system, in case a large shock hits one of the banks,
the bank may fail and induce losses to its counterparties. These
losses can subsequently potentially cause other defaults, therefore
creating a domino-effect. The authors show that when the under-
lying network structure is complete (each bank is connected to all
the others) the system is much more resilient due to the risk sharing
effect, while incomplete networks are much more fragile since banks
find it more difficult to diversify their portfolio structure against
idiosyncratic shocks.

Nier et al (2009) show in their work how the topological features
of the interbank network can be related to the financial stability of
the system. Surprisingly, the results highlight that the higher the
risk-sharing among banks, the higher the size of the domino effect
(up to a certain threshold value for the connectivity between banks)
in case of a shock hits one of the banks in the system. Furthermore,
they show that increasing the level of capitalization will reduce the
number of defaults in case a shock hits the system, and this effect
is strongly non linear. Other studies concerning the interbank net-
work, e.g. Gai and Kapadia (2010), clearly show the dualism of
interbank connections: on one side, they are necessary in order to
pool idiosyncratic risk of single institutions and improve the effi-
ciency of the banking sector. In Tori et al (2006), a dynamic model
of the banking system where banks can interact with each other
through interbank loans is used to show the stabilizing role of the
interbank lending. On the other hand, interbank connections can
turn to be channels for the propagation of local shocks through the
whole system. A summary of the results coming from this branch
of the literature can be found in Upper (2011).

From a supervisory and macroprudential viewpoint, it is there-
fore necessary to measure and monitor the stability of the banking
system as a whole, in parallel to the situation of the single financial
institutions. In this respect, different measures of systemic risk have
been developed, and a taxonomy of these measures is provided for
example in Bisias et al (2012). In this non-exhaustive literature re-
view of systemic risk we focus only on some contributions based on
network analysis and systemic financial linkages. In Eisenberg and
Noe (2001) a recursive algorithm to find the clearing payment vec-
tor that clears the obligations of a set of financial firms is provided.
In addition, the authors provide information about the systemic
risk faced by each institution. In Battiston et al (2012) a measure
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based on network feedback centrality is introduced, the so-called
DebtRank; this measure is used to analyze a dataset concerning the
FED emergency loans program to global financial institutions dur-
ing the period 2008-2010. The results show how, at the peak of the
crisis, all the largest institutions served by the FED program became
systemically important at the same time. In Halaj and Kok (2013)
an approach to generate interbank networks with realistic topologies
is presented. Furthermore, the authors expand the Eisenberg and
Noe (2001) algorithm to include firesales effect. Delpini et al (2013)
study the Italian electronic trading system (e-MID) with tools bor-
rowed from statistical physics to find the key players on a liquidity
overnight market. Interestingly, the drivers of the market (ie the
nodes which are crucial for the functioning of the interbank market)
are often not the hubs neither the largest lenders in the system. We
highlight that in all these contributions, results are always restricted
to contagion or spillover effects related to one particular segment of
the interbank market, which usually is the interbank claims banks
have on each other.

The branch of the literature closer to our contribution is probably
the one concerning dynamic interbank models. These discrete-time
models usually allow to include some realistic microeconomic be-
havior for the banks on top of the network structure. An example
can be found in Bluhm and Krahnen (2011). The authors study sys-
temic risk in a banking system where financial institutions are linked
to each other through interbank lending, and fire sales by one in-
stitution can materialize losses in all the others, since the price of
the (mark-to-market) assets in the secondary market is endogenous
in the model, and driven by the liquidity needs of the banks. The
authors also introduce a game-theoretical approach to identify the
contribution of each bank to systemic risk, and use this measure
to develop an optimal charge to reduce financial instability. Georg
(2011) develops a dynamic banking system where banks are allowed
to optimize their portfolios of investments and they are subject to
random shocks to their deposits. Within this framework, the author
shows how the topology of the interbank market affects the stability
of the system. In particular, he shows that contagion effects are
larger in random networks than in scale-free networks, the classi-
cal structure of real world systems. He also investigates the role
of the central bank in the interbank market, and in particular how
the level of collateral which is accepted by the central bank affects
financial stability. The results show that an abundant provision of
liquidity by the central bank leads to a reduction of the liquidity
banks exchange with each other on the interbank market. Ladley
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(2011) develops a model of a closed economy composed of households
which can deposit their funds with the banking sector and take loans
from the banks for their private investments, and banks which learn
how to better allocate their resources in order to maximize their
expected returns. Since banks can lend also among each other, bad
investments taken by households can trigger domino effects among
the banks in the system. Banks in the model are subject to regu-
lation, and the aim of the model is to qualitatively show the link
among regulation, interbank network structure, and the likelihood
of a contagion. The results show that for high levels of connectivity
the system is more stable when the shock is small, while the spillover
effects are amplified in case of larger initial shocks. Hataj and Kok
(2015) similarly introduce an agent-based model where banks opti-
mize their risk-adjusted returns. The model is used to study hoe
the adjustment of some key macroprudential policy parameters in-
fluences the interbank network structure.

Despite the huge number of contributions in network theory aimed
at the identification of important nodes in a graph, a lot of work still
has to be done for what regards multi-layered (ML) networks which
is the topic of this paper. In different fields, from telecommunication
engineering to sociology, ML systems are a natural representation of
the reality. Examples are the Open Systems Interconnections (OSI)
model, used to abstract the real internal structure of a communi-
cation system into different functionality layers, or the several ML
social network models which encapsulate in different layers the dif-
ferent natures of possible social connections among people. Finan-
cial systems are another example of multi-layered networks, given
the several kinds of connections that can exist among banks and
other financial institutions. Recently, Gomez et al (2012) showed
that a diffusion process, modeled as a flow traveling on the network
from node to node, can be extremely amplified in case the same set
of nodes is connected through multiple layers. The linear equations
they propose in order to analyze the model are hardly applicable
to cases where the nodes have a non-trivial internal structure and
the contagion mechanisms change from layer to layer, but the re-
sults clearly support the necessity to study ML systems from a more
holistic perspective than their single-layered counterparty.

We contribute to the literature in two main dimensions. First, we
study how different segments of the interbank markets, and the re-
lated risks arising from them, interact with each other in an holistic
view of the financial system. Second, we introduce a new measure
for systemic importance institutions which embodies information
regarding both the network structure of the multi-layered financial
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system, which can be extracted with classical tools from network
theory, and the balance sheets of the banks.

3 Multi-Layered Financial Systems

A natural way to study highly interconnected systems is network
theory. Network theory provides a rich set of tools to assess the
centrality (or systemic importance) of the members of a network
of nodes. In this paper, each node in the network represents a
bank. Importantly, each node will be equipped with a non-trivial
internal structure, representing the banks’ balance sheets. This is
crucial, since abstracting from a realistic internal structure for the
node means to disregard the realistic and interesting effects linked
to limited liabilities and capital absorption. Moreover, a key aspect
of this paper is to analyze the interconnectedness between banks in
a multi-dimensional space. Banks in reality are connected through
several kinds of relationships, directed and undirected, with different
maturities. In order to encapsulate this level of complexity, we use
a multi-layered instead of a single-layered network. We formally
denote a multi-layered network by a triple & = (V, W, L), where
V is a set of nodes, common to all the layers, L is a set of labels
indicating the different layers, W = (Wl, w2, ..., WL) is a set of
matrices W' € Ry, with the same cardinality of L, representing
the network topologies in the different layers.

We want to concentrate in particular on three layers, which rep-
resent three different kinds of dependencies among banks that were
revealed to be fundamental during the last financial crisis: (i) long-
term, direct bilateral exposures, reflecting the lending-borrowing
network; (ii) short-term direct bilateral exposures, reflecting the liq-
uidity network; and (iii) common exposures to financial assets, rep-
resenting the network of overlapping portfolios.? Consequently, we
will label layers [; and l9 for the long-term and short-term bilateral
exposures, respectively, and the layer [3 for the network of common
exposures. All the three networks are weighted and directed.?

In layer [1, a link from node 7 to node j represents an unsecured,
long-term loan from bank i to bank 7, and the load Wllj on the edge
represents the face value of the loan. If bank ¢ defaults, losses in

21t should be noted that several other layers can be added to the multi-layered framework,
for example the layers representing the network of collaterals and the network of derivatives
exposures. Naturally, the inclusion and calibration of other layers require more data, not
available to us, that would increases the correctness of the results.

3The kind of network arising in layer I3 depends on the definition used to compute the
amount of overlapping securities portfolios. Different definitions can bring to undirected and
unweighted networks as well.
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Figure 1: An example
of a triple-layered net-
work, where the same
set of nodes belong to
each of the three lay-
ers, characterized by its
own topology. The first
two layers contain di-
rected networks, mean-
while the last one is undi-
rected. The different
neighbors in the differ-
ent layers give the multi-
layered networks com-
pletely different system
dynamics during shock
propagation, since the
number of affected nodes
can drastically be in-
creased due to the multi
dimensional structure of
the system.

this layer are transmitted to its creditors, since its failure can po-
tentially result in the inability of the bank to pay back (partially
or totally) its outstanding loans. The losses thus incurred would
directly affect the capital of the creditor banks. Layer [; therefore
embodies interbank counterparty risk; differently from the case in
which banks lend to isolated firms, when the borrower is a bank im-
merses in a network of credit relationships, its probability of default
depends also on its own counterparties, which in turn depends on
the conditions of their debtors, and so on. Interbank counterparty
risk therefore is more complicated to estimate than risks related to
non-bank counterparties, especially because banks usually do not
have the complete information about the full network of exposures.

For what concerns layer ls, the global financial crisis illustrated
that the short-term interbank funding market can play a crucial
role in the propagation of shocks. Even well-capitalized financial
institutions, which heavily rely on some form of short-term debt for
financing their balance sheets, can get into trouble when the liquid-
ity in the interbank markets suddenly evaporates. This happens if
banks start (for whatever reason) to hoard liquidity instead of mak-
ing it available on the market. The introduction of layer lo aims
at capturing funding risk. A link from node 7 to node j represents
an unsecured, short-term loan from bank ¢ to bank j. The risk for
bank j is that the debt will not be rolled over by its creditor bank 4,
exposing him to funding risk. We note the necessity to use different
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layers in order to encapsulate different maturities in the interbank
connections, which bring to different contagion mechanisms during
a shock propagation.

The third layer l3 is meant to reproduce the network of over-
lapping portfolios. When two banks invest in the same mark-to-
market financial securities, their balance sheets can be correlated,
since problems of one bank can force it to sell some securities, and
the resulting price decline from such fire sales will affect the bal-
ance sheets of the banks which hold the same asset mark-to-market.
Layer l3 aims at reproducing such interdependencies among banks’
balance sheets, and therefore embodies the liquidity risk banks face.
A link between bank 7 and bank j exists if the two have some com-
mon mark-to-market assets in their balance sheets, and the load
on the edge represents a measure of the strength of the correlation
among them. In this layer, as already highlighted, shocks are trans-
mitted through an indirect channel.

Funding risk and liquidity risk are intrinsically related to each
other. Funding risk refers to the condition for which a bank is sud-
denly unable to raise liquidity, in this framework exemplified by the
short-term interbank market. This can happen for several reasons:
bad news about the financial institution leads to a deterioration of
its creditworthiness, a common hoarding behavior by banks due to
the fear of bad times ahead, or a real deterioration of the quality
of the assets of the bank. If the bank is used to fund its assets
through short-term loans, the inability of the bank to roll over its
debt can force it to firesale some of its financial assets, which would
have negative implications on the price of those assets. When asset
prices fall down, deteriorating balance sheets may force firms which
face capital ratio requirements to adjust their portfolios, perhaps by
trying to hoard liquidity and capital. This mechanism can create
liquidity spirals which amplify shocks (Brunnermeier (2009)).

4 Model for the Interbank Network

The model described in this section will be used for the analysis
of systemic risk in this paper, and it is designed to capture impor-
tant features of a real financial system. The model is composed
of N interconnected financial institutions (hereafter, banks) and M
financial securities. Banks’ balance sheets are here composed of se-
curities ¢;, long-term interbank loans lﬁ, short-term interbank loans
[7, cash ¢;, and other assets including all the other banks activity
that will not be considered in our model, of; i.e. total assets can be

ECB Working Paper 1944, August 2016 12



expressed as follow: a; = ¢; + Il 4+ 15 + ¢; + of. Liabilities include
long-term interbank borrowing bg, short-term interbank borrowing
b;, deposits d;, and other liabilities not considered in the model, oﬁ.
i.e. total liabilities can be expressed as: I; = bk + bf + d; + o!. The
balance sheets equality holds:

a; =l + eq; (1)

where we call eg; the equity of bank i. The securities portfolios of
each bank are composed of a certain number of financial securities
Sus = 1,2,...,M. So we can formally write for the mark-to-
market value of the portfolio:

M

€; — ZSL'])M (2)

pu=0

where p, is the price of the security p and sic > 0 is the notional
amount of security p in the portfolio of bank ¢. Banks’ portfolios are
assumed to be marked to market, and the price of the securities is
endogenously determined in the model. The financial system can be
mapped through the three weighted matrices described in section 3:
W1 describes the long-term interbank exposures, W2 the short-term
interbank exposures and W3 the common exposures among banks.

Banks have to keep their risk-weighted capital ratio above a cer-
tain threshold value, and they have to fulfill a liquidity requirement.
The risk-weighted capital ratio is computed as:

a,-—li

wi - (1L +15) + ShLo w - sip, + CRW A;

(3)

Yi =

where w™ represents the weight for interbank assets, fixed here at
0.2, and w* are the weights for the financial assets, which are inferred
from our data set; C RW A; represents the part of the risk-weighted
assets which is not used in our model, and therefore is a constant.
The first constraint banks have to fulfill is:

Vi = (4)

where 7 is the minimum capital requirement. The second constraint
banks have to fulfill is:

ci > B (di +b7) (5)

where [ is the parameter representing the liquidity buffer.
In this model, a bank can suffer losses for two reasons: (i) some
of its counterparts fail and are unable to pay back the debt, or (ii)
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the price of some of its securities declines. The price of each security
is endogenously determined in the model, and it is described by the
following equation:

(6)

N .
> SL

N .
—ay, - s sell
Pu =p2'€wp{ E “}

where 0 < selllz < S'Z is the amount of security u sold by bank 7, and
o, is a positive constant representing the deepness of the market for
that security.

If the bank’s capital ratio in eq. (3) becomes lower than ¥ after
it books some losses, the bank can increase it in two ways: (i) by
reducing its short-term interbank exposure, or (ii) by selling securi-
ties. Since the cheapest way of increasing the risk-weighted capital
ratio is to reduce interbank exposures, as long as [ > 0 each bank
first prefers to follow this way.? Similarly, if the bank has to raise
liquidity in order to fulfill the requirement expressed in eq. (5), it
will first withdraw liquidity from the short-term interbank market,
and if this is not enough, it will liquidate part of its portfolio. If a
bank is not able to fulfill the capital requirement, it defaults. When
a bank defaults, it is first liquidated, so all its securities are sold (if
any) and it withdraws all its funds from the short-term interbank
market, and then it tries to pay back its creditor banks. The fail-
ure and of a bank involves, in the model, three risks for the other
banks: (i) counterparty risk, associated with the possible losses form
the interbank market, (ii) funding risk, associated with the possibil-
ity of losing funds from the short term interbank market, and (iii)
liquidity risk, associated with firesales of mark-to-market financial
securities.

4.1 Model Dynamics

The model dynamics is reported in Fig. 2. Starting from a par-
ticular configuration of the multi-layered network & of banks with
heterogeneous balance sheets, we shock the system and then repeat
the same sequence of events, representing a short-term financial pe-
riod, until the number of defaults stops increasing.

4In this model, withdrawing funds from the short-term interbank market is the cheapest
way to raise liquidity, since it does not involve any capital losses like the ones associated
with firesales. Nevertheless, in reality a bank might prefer to sell assets if the market is deep
enough to absorb the sales without resulting in large depreciation of the value of the assets.
In any case, the dynamics reproduced in this model represents a possible series of events in
case banks stop trusting each other inducing them to hoard liquidity rather than retain funds
in the interbank market.
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Figure 2: The Figure represents the dynamics of the model. Starting from the
system at equilibrium, we shock it, usually by letting default one or more banks at
the same time. Subsequently, the sequence of events in the shaded area of the figure is
iterated till the number of defaults stops increasing; at the beginning of each (short-
term financial) period, banks book losses coming from the default of their creditors
during the previous period, if any; in a second step, they decide the percentage of debt
to roll-over to their borrowers in the short-term interbank market; in the last step,
banks which have liquidity needs liquidate part of their securities holdings.

At the beginning of each period, banks book losses from the in-
terbank market, if any, due to the bankruptcy of their debtors in
the previous period. Those losses immediately affect the capital of
banks, and therefore their risk-weighted capital ratio described in
eq. (3). If a bank’s risk-weighted capital ratio remains above the
threshold value %, then it will not react to the losses. Otherwise,
it will first try to reduce its short-term interbank exposures. In-
deed, during each period, banks have to decide which percentage of
the short-term debt they want to roll-over to their debtors. This
choice depends both on the internal needs of banks, due for exam-
ple to losses coming from the long-term interbank market, which
causes a reduction of the risk-weighted capital ratio of the bank un-
der the threshold value %, or due to the fact that its own funding
from other creditors bank is reduced, forcing it to withdraw money
from the short-term market. This loop is properly described by the
following map:

£ BT = min (7+maz (W2f = e 0) 5 57) (7)

where f = (f1, f2,--., fn) is the percentage of funds withdrawn by
each bank from the short-term interbank market (f; € [0,1], i =
1,2,...,N); 7= (r1,re,...,ryN) is the amount each bank wants to
withdraw for liquidity and capital reasons; I8 = (15,15, . . ., I%) is the
total short-term exposure of each bank; and ¢y, r = (Chu £ Couf,2y - - -5 Chuf, N)
is the total amount of cash each bank has out of its liquidity buffer,
if any: cp,p; = max [c; — f(d; +b§);0]. The capital and liquidity
needs are computed in order to restore the required level of cash and
risk-weighted capital ratio according to the bank’s constraints. We
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have from equation (5):
tig _ oo (s, Bldi +07) —ci
) mm(w NG ®)
which is larger than zero as far as ¢; < - (d; +b3). If ¢; > 8- (di +
b¥) the banks have no liquidity needs to fulfill, and therefore rézq =0.

In the same spirit, we compute the amount to be withdrawn due to
the risk-weighted capital ratio constraint; from equation (4) we have:

v (CRW A; + Zﬁio wh - shpp) + vt - (15— i) — eq,

Yiw'®

) U
i = min <l;§ -7

9)
“% is larger than zero as far as vy; < 7. If v; > 7, then ;¥ = 0. The

final amount to withdraw will be r; = 19 475 € [0,15]. All in all,
equation (7) simply states that each bank withdraws funds from the
short-term interbank market only in case it has problems fulfilling
its liquidity or risk-weighted capital ratio requirements, and in case
other banks decide to withdraw their funds deposited with the bank
and the cash it has is not enough to pay back those creditors.

Once banks decide about how much to withdraw from the inter-
bank market, they may still need to sell securities in order to pay
back eventual creditors and to restore the required levels of liquidity
and capital buffers. As described by eq. (7), banks first use their
available liquidity to pay back creditors, and if this is not enough
they withdraw funds from the short-term interbank market. In case
they still need liquidity, they have to liquidate some securities. We
can indicate with Z € Ry the matrix whose entries Z;, > 0
indicate how many securities of kind g bank ¢ has to sell in order
to fulfill its needs. Since the securities prices are adjusting accord-
ing to eq (6), we use a modified version of the map introduced by
Eisenberg and Noe (2001) in order to compute both matrix Z and
the clearing vector p’ which resolves the system. We have:

p=min G175+ ¢+ Z - 0| (10)

r

where we denoted with IT the matrix with the relative obligations
among banks, that is:

2
w f]
I = =—25— (11)
5 wiifi
The vector [ represents the total obligations of the banks towards
the other institutions, that is:

li = Zw]zifj (12)
J
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and ¥ is the vector indicating the value of each security, according
to eq. (6).

In turn, the matrix Z is computed as the sum of three compo-
nents, which are the liquidity needs driven by obligations towards
other banks in the system, the liquidity needs driven by the require-
ment expressed in eq. (5), and the liquidity needs driven by the
capital requirement expressed in eq. (4). In more details, they can
be formalized as follows: suppose there is only one security in the
system, the generalization to the case of several securities is then
straightforward; in this case, the matrix Z becomes a vector, again
composed by three parts; the first part is:

: [—c—TIIT-5
Z" = min |max O;—p ;5 (13)
Du
where we indicated with § = (s1,s2,...,sy5) the amount of secu-

rities each bank still have in its portfolio. This is the component
driven by the credit line reduction in the short-term interbank mar-
ket.

The second component is:

i max [O;E’— a(d+ bg)}
7" = min ;8 (14)

DPp

This component takes into account the liquidity requirements of
banks.

Eventually, there is the component due to the necessity of fulfill-
ing capital requirements, which is larger than zero if also by with-
drawing all their funds from the short-term interbank market they
still need to increase their risk-weighted capital ratio:

W+ wip, — G (15)
;S

Z%? = min

wH

The sum of these three components represents the total amount
which appears in eq. (10) : Z = Z® 4 71 4 7 The general-
ization to the case of multiple securities is simply derived as follow:
each bank tries to sell the first type of security in its portfolio; if the
bank sells all those securities, it moves to the second type of secu-
rity, and so on, up to the point when it fulfills its liquidity needs.
Alternatively, if its liquidity needs cannot be fulfilled the bank will
have to sell all its securities.
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After the payment vector p'is computed, banks which are not able
to pay back their creditors or to fulfill their Risk-Weighted Capital
Ratio (hereafter RWCR) are declared in default, they are liquidated
and eventual losses are transmitted through the long and short-term
interbank market at the beginning of the next period. The dynamic
is repeated until the cumulated number of defaults, namely the sum
of the number of defaults in each short-term financial period, stops
increasing. It should also be noted here that in our framework a
bank can default for two different reasons: first, it can be unable
to fulfill liquidity or capital requirements, second, it may be illiquid
and become unable to pay back its debtors.

4.2 Data Set

Our dataset consists of a sample of 50 large EU banks. For each
bank, we include information about capital, short-term and long-
term interbank borrowing, deposits, short-term and long-term in-
terbank loans, aggregate securities holdings®, and cash. The dis-
tinction between short and long-term interbank assets reflects the
maturity of the loan which can be below or above three months.
We also know the RWCR of banks, from which we can reconstruct
the mean weights for the financial securities of each bank. The
data sources are the banks’ annual financial reports, and Bureau
van Dijk’s Bankscope; the balance sheet data refer to the end of
2011. Figure 3 shows the total capital across the banks in the
sample, and their Risk-Weighted Capital Ratios, revealing a high
level of heterogeneity. The horizontal red line in the lower panel
of the figure represents the standard Risk-Weighted Capital Ratio
requirement equals to 8%, as specified in the Basel standards. The
aggregate short-term interbank exposures in the system amount to
about €1.2tn and the aggregate long-term interbank assets amounts
to €900bn.

We do not have data on individual banks’ bilateral exposures,
neither on the details of financial securities portfolios. Instead, we
use this uncertainty as a degree of freedom of the model, in order to
investigate which multi-layered network structures are particularly
prone to a systemic breakdown. In principle, every possible network
in each of the three layers represents a plausible configuration for
the multi-layered network structure; in order to focus only on the
interbank networks which are the most probable in the real financial
system, we extract the network topologies for the short and long-

5As securities holdings, we use the sum of Securities Held for Trading, Securities Held at
Fair Value and Awvailable for Sale Securities.
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Figure 3: In the upper panel, the equities of the 50 banks in our sample, in millions.
In the bottom panel, the Risk-weighted Capital Ratio of the banks; the horizontal red
line represents the standard Basel capital requirement of 8%. The figure highlight a
high level of heterogeneity in the sample, both in term in total equity and in term of

Risk-weighted Capital Ratio.

term interbank exposures according to a probability matrix, with
the only restriction that each bank is exposed to other entities at
most 20% of its total interbank assets. A probability matrix P¢
is a matrix which entries pz-cj specify the probability of existing of
the directed link 7 — 7, representing a loan from bank i to bank j.
The probability matrix is built upon the European Banking Author-
ity (EBA) disclosures on the geographical breakdown of individual
banks’ activities as disclosed in the context of the EU-wide roll stress
test. The methodology is based on Hataj and Kok (2013), and net-
works in layers [1 and [9 are generated as follow: banks are randomly
extracted from the sample, and for each bank we sequentially gener-
ate links according to the probability matrix; for each link, a random
number from a uniform distribution on [0, 1] is extracted, indicating
what percentage of the residual interbank assets of the first bank is
deposited in the interbank liabilities of the second. Formally, for

links in layer [; we have:

m
1 1
lij—fw li—Zlik
k=1
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where €;; ~ U(0,1), and {11-11,17;12, o ,lilk} are the links in layer [y
starting from node i generated in the previous m steps of the algo-
rithm. A similar expression can be written for layer [;. The amount
in eq. (16) is properly truncated to take into account the limited
liabilities of the borrowing bank, and the constraint that each bank
is exposed to no more than 20% of its total interbank assets to each
other bank. This constraint excludes network realizations where a
bank lends all its interbank assets to a single counterparty.

In contrast, the network in layer /3 is randomly generated, since
we do not have sufficiently granular data or statistics concerning
the securities portfolio structures of the banks in the sample. We
only have information about individual banks” aggregate amount of
securities. This random network generation is conducted by first
choosing the number M of securities to use in the simulations, and
subsequently building a random bipartite network between the N
nodes and the M securities: in this network a link from a bank ¢ and
a security p means that the bank has in its portfolio that particular
security, and the amount of the shares is represented through the
weight of the edge. Each link in this bipartite network has the same
probability p to exist. In the baseline setting we assume that, for
each bank, all the out-coming links have the same weight. Starting
from this random bipartite network, there are different ways to build
the network of the overlapping portfolios, and an example is:

3 M SH 3/.1’
Wi=>" stjot . [mam [1; SLH (17)

p=1°j J

In this setting, the weight of the directed link from bank 7 to bank
j is the proportion of the portfolio of bank i that overlaps with the
portfolio of bank j.

We note that the topology of the multi-layered network is the only
degree of freedom in the simulations, since banks’ balance sheets are
always kept fixed and calibrated according to our data. Therefore,
all the degrees of randomness would be completely removed in case
of full knowledge of direct bilateral exposures for the long-term in-
terbank market, exposures on the short-term interbank market, and
more granular information on banks’ portfolios.

4.3 Topological properties

The networks in layers /1 and l9 generated with the algorithm pro-
posed in the previous section have link weights which depend on
the order of drawn linkages. For a given bank i, the first drawn
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link (7,7) would on average carry 50% of bank 4’s interbank assets,
the second drawn link 25%, and so on. Since we do not have data
for a proper calibration of link weights, we are implicitly assum-
ing that banks trade more loan volumes with their more frequent
counterparties. We note that if the number of simulations is large
enough several different scenarios will be generated, including situ-
ations where nodes have many linkages of similar size. Moreover,
the use of a probability matrix to randomly generate the networks
in the different layers does not take into account the possible statis-
tical dependency of two links to exist in the same network. Again,
without proper data, it can be difficult to reproduce such a corre-
lation structure in the links formation. Networks produced in this
way nevertheless show some of the most common statistical regular-
ities found in real interbank networks, as documented in Boss et al.
(2004), Iori et al. (2008), Fricke and Lux (2012) and Bargigli et al.
(2013). Such regularities are heterogeneity of nodes’ degree, disas-
sortative mixing, i.e. the tendency of high degree nodes to connect
with low degree nodes, sparsity, and a Jaccard similarity among dif-
ferent layers similar to the one found in real multi-layered interbank
networks,

More in detail, Fig. 4 shows the total degree distributions for
layers [1 and lo; the two graphs highlight a high level of heterogeneity
in the nodes’ degree, meaning that most of the nodes have very few
connections, and few nodes have many connections to the other
banks in the system.°

One way to capture assortative mixing in a network is by examin-
ing the properties of the average nearest neighbor degree as function
of vertex degrees, usually indicated as (K,,,), and defined as:

(Kon(R)) = 3P (Wlk) - ¥ (18)
k/

where P (K'|k) is the conditional probability that an edge of node
degree k has a neighbor of degree k’. If the above function is in-
creasing, the network shows an assortative mixing, since node with
high degree tend (on average) to connect to nodes with high degree.
Alternatively, in case function 18 is decreasing, the network shows a
disassortative mixing, since nodes with low degree tend to connect
with high degree nodes, and vice versa. Figure 5 shows a clear dis-
assortative mixing in the structure of layers Iy and l5.” Finally, we

6Also if we use the same probability matrix PG for the two layers l; and l2, the final
topologies can be different due to the role played in the generating algorithm by short and
long-term interbank exposures.

7The non-monotonic trend, observed in the left panel of the figure, arises directly from the
combination of the probability matrix PS and the banks balance sheets.
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Figure 4: The LHS figure shows the total degree distribution of layer l1, and the
RHS figure shows the distribution for layer l3. A clear level of heterogeneity among
nodes’ degree is evident in both the layers.
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Figure 5: The LHS figure shows the disassortative behavior for layer 1, while the RHS
shows the same for layer l2. As means to capture the assortative mixing is by plotting
the average nearest neighbor degree as function of vertex degrees. A decreasing trend
means that the network is dissortative, since nodes of high degree tend to connect to
nodes of lower degree.

report a mean density for layers /1 and Iy equal to respectively 14%
and 12%.

We next introduce a measure for the similarity among the topolo-
gies in the different layers, since this measure will be used to analyze
the results from the simulation engine. Generally speaking, given
two networks G; and G2, we use the Jaccard index Ji2 € [0;1]
to describe the similarity among the networks (see Appendix for a
formal definition). This index will be equal to 0 when G and Go
have no links in common, and it will be equal to 1 when the two
networks are identical. As documented in Bargigli et al. (2013), val-
ues of the Jaccard index for different layers in the same interbank
market range roughly about between 0.1 and 0.3, depending on the
kind of transaction (secured or unsecured) and on the point in time
the index is measured. As comparison, we can compute the Jaccard

ECB Working Paper 1944, August 2016 22



index J1 among layers [1 and l9 of our multilayer network, the Jac-
card index .Jo3 among layers lo and [3, and the Jaccard index .Ji3
among layers [1 and [3. The mean values and the standard devia-
tions of these three indexes, computed over 107 different multilayer
network structures generated according to our simulation engine,
are reported in Table 1. The Jaccard index .Jio for layers [; and [o
is comparable to the one found in reality. Obviously, since layers I3
are generated from a random bipartite network, we cannot expect
realistic values also for the indexes .Ji3 and Js3, which we are not
able to measure in reality. We will use those indexes again when we
study the results of our simulation engine.

Table 1: Jaccard indexes. The table reports the mean values of the Jaccard indexes
J12, J13 and Jo3 for the multilayer networks generated with the algorithm proposed
in Section 4.2, together with their standard deviations.

J mean sd
Ji2 027 0.03
Jis 0.09 0.04
Jog  0.10 0.04

We stress again that the choice to use three layers for the struc-
ture of the financial system is also driven by data availability. Intro-
ducing further layers without having proper data to calibrate them,
would result in the introduction of a large number of parameters,
which can drastically complicate the analysis of the results. Instead,
we prefer to use layers that can be (at least partially) calibrated, and
at the same time that were revealed to play a fundamental role in
the last financial crisis.

5 Simulation Results

Systemic risk in interbank markets depends on numerous factors
regarding both the financial status of the members of the bank-
ing system, their balance sheets, and the disposition of the linkages
among them. In this paper, we keep a defined and realistic structure
of banks’ balance sheets, as described in section 4, and we investi-
gate how the different structures for the interconnections among the
agents affect the financial stability of the whole system. This is in-
teresting for various reasons. First, it gives indications about the
impact of different network structures on financial stability; second,
by using classical tools from network theory, it enables us to assess
each bank’s contribution to systemic risk; third, it sheds light on
the role of banks’ capitalization on the resilience of the system.
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In the baseline specification of the model, parameters are set in a
way to reproduce realistic regulatory requirements on banking sys-
tems and a plausible price elasticity for the securities market. The
minimum risk-weighted capital ratio requirement is fixed, according
to the Basel standard, to ¥ = 8%. The minimum required liquidity
buffer is fixed through the parameter 5 = 5%.

The price of all M securities is initially fixed at 1: pg =1(u=
1,2,---,M). The elasticity factors, o, are fixed at 0.2, and the
number of securities is M = 30. In this way, banks do not have
preferences about which securities to liquidate first in case of need,
and the bipartite network banks-securities, which represents banks’
securities holdings, is built with a Erdos-Rényi index p = 0.2. We
will investigate later how the number of securities and the topology
of the network in layer [3 affect the results.

The initial shocks are assumed to derive from the failure of one
of the 50 banks in the sample. The failure of the bank implies the
liquidation of all its securities holdings, the transmission of losses
on the long-term interbank market, if any, and the withdrawn of
all the funds it provides in the short-term interbank market. The
risk for the system hence materializes via the lack of the funding
services provided by the targeted bank, together with the risk of
losses transmitted through the exposure channel and the securities
market. How the system reacts to this initial shock strongly depends
on the topological structure of the underlying multi-layered network.

5.1 Systemically Important Banks

The importance of a bank in a banking system does not depend
only on its financial situation. In fact, contagion is a process involv-
ing two main steps: the default of one or more components of the
system, which in turn depends on the financial situation of the en-
tities, and the propagation of the shock through interbank linkages.
In this paper, we are interested in this second effect, namely how
the network structure can affect the stability of the system after an
idiosyncratic shock hits one of the banks, and part of our task is to
determine which structures are more prone to financial breakdowns.

A first result from our simulation engine is a test of the impact
of each bank’s failure on the whole system. For this purpose, we
first shock one initial bank, we call it bank by, and then we let the
system evolve according to the scheme in Fig. 2 up to when the
cumulated number of defaults stops increasing. The impact of each
bank on the financial stability of the system is measured through
the total number of defaults its failure produces. This number of
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defaults is the random variable we want to estimate the distribution
of. In fact, even if the banks’ balance sheets are always the same,
including also the aggregate exposures of each bank towards all the
others, the degree of randomness left in the structure of the financial
multi-layered system produces a level of uncertainty on the number
of defaults following the bankruptcy of bank by.®

In order to highlight the role of each bank in the system, we
present the disentangled effects from the three layers, together with
the effects coming from the complete multi-layered network’s struc-
ture. To this end, we first run the simulations when all the banks
are only connected through the long-term interbank market, mean-
ing that the only layers presenting some edges is l1; the only risk
present in this system is therefore the counterparty risk. Then we
run the same simulations with only layer /o activated, meaning that
the only risk present in the system is the funding risk.? In the third
scenario, we run the simulations with layer [3 as the only active
layer'?, representing the case where the only risk banks face is lig-
uidity risk. Finally, we present the case where all the three layers
are activated simultaneously.

As a benchmark example, we start to show the dynamics of the
contagion process when a particular bank defaults, for one specific
configuration of the multi-layered network. In particular, the red
bold line in Fig. (6) represents the evolution of the number of de-
faults when all the three layers are working together. The other
lines in the graph represent all the possible other combinations of
active contagion channels. Simply by eye-balling, it is easy to dis-
cern that the sum of the number of defaults in the single-channel
scenarios never reaches the total number of defaults for the whole
system. A deeper examination reveals that this phenomenon is ac-
tually due to spiral effects: in case only one of the three layers is
active, the contagion process is dampened (see Fig. 6). Yet when
more than one channel of contagion is present, the contagion process
is much more probable, and liquidity needs of one bank can result
in a capital reduction of others, which have to increase their capi-

81t should be recalled that when the bank by defaults at the beginning of the simulation, it
is liquidated, implying that it withdraws all its funds from the short-term interbank market,
it sells all its available for sale securities, and it tries to pay back its creditors on the short
and long-term interbank market.

9In those two scenarios, each bank is assumed to have a securities portfolio which is com-
pletely independent from all the other banks’ portfolio in the system. Nevertheless, price is
still driven by eq. (6), and therefore firesales can still be costly for the banks, also if there are
no contagion effects due to common exposures.

101n this third scenario, all the interbank assets of the institutions in our sample are supposed
to be directed to an external node, and all the liabilities in the interbank market are provided
by this node, which does not play any other role in our financial simulator, in the sense that
it never withdraws funds and it cannot fail or transmit any losses.
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tal ratio by withdrawing further short-term funds or by liquidating
their securities portfolio.
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Figure 6: The figure shows the dynamic process when the bank fails for one particular
realization of the multi graph. The horizontal axes represents the time, and the vertical
axes represents the total number of defaults.

To clarify the importance of taking into account the interactions
among different layers, Fig. (7) reports the results for bank FR014
(as example) in a more statistical fashion.!! The four panels in the
figure show the distributions of the number of defaults in the four
scenarios described above, namely when only layer [; is activated
(top left panel), when only layer 3 is activated (bottom left panel),
when only layer /3 is activated (top right panel), and finally when the
three layers are simultaneously activated (bottom right panel). The
red line in the bottom right panel represents the quantitative convo-
lution of the three single-layered network distributions: it basically
represents the linear superimposition of the three effects, and it is
interesting to compare it with the distribution for the total number
of defaults in the case of three active layers. In fact, the differences
among the two have to be attributed to the interaction of the three
layers.

As one can see from the figure, the default of bank FR014 results

1 Similar graphs for the other important banks in the sample are available upon request.
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in contagion effects via only one channel, namely the short-term in-
terbank exposures represented in the bottom left panel of the figure.
Interestingly, however, the systemic importance of the bank is am-
plified by the presence of the other two layers in the multi-layered
network. In fact, when the single layers are considered separately,
the largest number of defaults is 12, reported when only layer lo
is activated, meaning that bank FRO14 is an important short-term
liquidity provider. No defaults are reported when only layer [ is
activated, and a maximum of 5 defaults can be seen when only layer
l3 is activated. Yet, when we consider the three layers working to-
gether, the largest number of defaults reported in the simulations
is 42, and the distribution is much more fat tailed. As one can see
from the bottom right panel of Fig. (7), the distribution of the
number of default for the case where the three layers are simultane-
ously activated differs from its convolution counterpart (red line in
the same panel) in the way that the three layers working together
produce more mass in the tail. We will show in section 6 that the
risk transformation process implicitly performed in banks’ balance
sheet activities is at the core of the generation of high level of sys-
temic risk, and this will clarify the importance to study the financial
stability from a more holistic lens.

Overall, for the great majority of the banks there is no substan-
tial contagion effects when they fail, indicating a certain resilience of
the financial system against random defaults of its members. At the
same time, there are a few banks whose default could have consider-
able contagion effects in at least one of the three layers, and this im-
portance is extremely amplified when considering all the three layers
in conjunction. The main lesson from these results is the limitations
of measures of systemic risk based on single-layered networks’ con-
figurations. Single-network measures run the risk of heavily under-
estimating the systemic importance of banks, since they usually take
into account only the counterparty risk associated with a particular
segment of the interbank relations. The simulations performed with
only layer Iy activated, on the other hand, show the importance of
funding risk in banking activities, as also highlighted during the last
financial crisis, and how it can materialize if banks start hoarding
liquidity instead of making short-term funds available on the inter-
bank market. Moreover, the amplification of the shock due to fire
sales and to non-perfectly liquid markets can greatly amplify local
shocks, leading to much more dangerous configurations in which a
large portion of the banking system can break down. We also note
that with the selected parameters, the layer /3 representing common
exposures usually just works as amplifier for the propagation of an
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Figure 7: In the top left panel, the distribution of the total number of defaults when
the bank FR014 defaults in our simulation engine in the first scenario, namely when
the only active layer is [1. The distribution shows the counterparty risk that the bank
represents to the whole system. In the bottom right panel, the distribution of the
number of defaults when the only active layer is l2. In the top right panel the same
distribution is presented for the case of layer l3, which represents the contribution of the
bank to the liquidity risk of the system. In the bottom right panel, the distribution
of the total number of defaults in the case of all the three layers are active at the
same time. The red line represents the quantitative convolution of the other three
distributions, representing the linear sum of the three effects. Each graph is the result
of 50000 realizations of the banking system.

initial shock.
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5.2 Systemically Important Topologies

The previous subsection showed that, given an initial defaulting
bank, different topologies for the multi-layered network imply dif-
ferent results with respect to the stability of the financial system. In
particular, for some banks there exist critical configurations for the
system such that it becomes prone to systemic breakdowns. Those
configurations are the ones which populate the fat tails of the distri-
butions of the total number of defaults highlighted in the previous
subsection.

An interesting question which can be addressed with the simu-
lation engine is weather there exist some configurations which are
critical for all the banks at the same time. This is not a trivial issue.
In fact, also if a topology of the multi-layered graph can make the
system very vulnerable to the failure of one particular institution,
we cannot so far say anything about the systemic importance of the
other banks in exactly the same network structure. In case a very
important bank for the system in terms of the financial services it
provides to the other banks, assumes a central position in the net-
work structure, systemic risk is high, since the bankruptcy of this
bank can create contagion effects which affects a large number of
other financial institutions. If substantial contagion occurs only in
some of the simulated network structures we generate in our simu-
lations, it means that, in those cases, the idiosyncratic risk assumed
by the defaulting bank was badly distributed among the other insti-
tutions in the system. We therefore speak about systemic risk, and
systemically important institutions. Moreover, the possibility that
more large banks become systemically important at the same time
is a much riskier situation for the entire system. Given the proba-
bility matrix P®, we are interested in investigating the possibility
of existence of systemically important topologies; formally, given a
certain multi-layered graph &, we can compute the systemic risk
associated with the structure as follow:

S d(i)

Re = == (19)
where we indicate with d(i) the number of defaults caused by the
bankruptcy of bank i, computed as the result of our simulation
engine.

In order to explore the possibility and the frequency of extremely
critical configuration for the banking system, we generate 10% multi-
layered network topologies, and for each of these configurations we
compute the mean value of the number of defaults produced by the
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initial failure of each of the 50 banks in the system, according to eq.
(19). In this way, we associate to each network structure produced
its systemic relevance, indicating the mean level of systemically im-
portance across the banks. Obviously, since most of the banks do
not produce any contagion effects upon their failure, the mean num-
ber of defaults will be relatively low. Figure 8 shows the results of
this exercise. In the left panel of the picture the distribution of the
systemic relevance Rg of 10% multi graphs produced following the
methodology described in section 4 is shown. It can be observed
from the figure that, most of the network structures are only rele-
vant in the case where one of the largest banks default. There exist,
nevertheless, some topologies which make the financial system par-
ticularly prone to a financial breakdown. To clearly illustrate this
idea, in the right-side panel of Fig. 8 two extreme cases are shown:
in the multi network structure represented by the blue crosses, the
initial bankruptcy of almost all the banks does not produce any
contagion effects, apart from the case of bank 34 which triggers two
other defaults. The systemic relevance for this structure will there-
fore be close to zero. By contrast, the red triangles in the same
picture show a very risky configuration for the system, since the
initial failure of 11 financial institutions would trigger a lot of other
defaults, highlighting the financial weakness of the entire system.

Network Financial Resiliance
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Figure 8: On the left panel, the distribution of the systemic relevance is plotted
for 10° different network topologies. Each systemic relevance parameter is built by
generating the same network N times, where in our case N = 50, and for each of
this realizations we shock one of the banks in the system and we count the number
of defaults: the mean value of those numbers is then used as systemic relevance for
that configurations. The tail of the distribution highlights the existence of some critical
configurations for the financial system. As example, we present in the right panel of the
figure two cases: the network described by the blue crosses is a resilient configuration,
since the defaults of all the banks does not produce any considerable effects. The
network described by the red triangles, on the other hand, is extremely unstable, since
the failure of one of the largest bank trigger a lot of subsequent defaults.
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Hence, fig. 8 illustrates that network structures matter for the fi-
nancial resilience and the proper functioning of the banking system.
It should be recalled that in all the simulations the banks’ balance
sheets are kept constant, and therefore also the aggregate short and
long-term interbank exposures. It is clear that configurations like
the one in the tail of the distribution in the left side panel of Fig. 8
have to be avoided. In this framework, the multi-layered networks
are extracted according to a particular distribution specified by the
probability matrix P for layer {1 and Iy and by a random portfo-
lios generator for layer [3, and they are all plausible networks, in the
sense that there is a certain probability for the real system to be in
those configurations. In reality, however, the multi-layered network
structure arises as the result of the local behaviors of a multitude
of economic agents, which (supposedly) have as target the maxi-
mization of their personal interests. The experiments we performed
highlights once again the necessity of having more granular data
regarding banks’ direct and indirect interconnections, in order to
monitor the system from a global perspective and avoid it to evolve
through configurations extremely prone to large breakdowns.

Consequently, a key objective of our analysis is to identify dan-
gerous configurations. We introduced in Section 4.3 the Jaccard in-
dex as measure of similarity between two different networks, and we
characterized its basic statistical properties for the networks gener-
ated in our simulation engine. We now study the correlation between
the indexes Jy2, J13 and Joz and the systemic relevance parameter
Rg introduced above. Fig. 9 shows the result. In particular, the
four panels plot the Jaccard index against the systemic relevance
parameter, where J* = Jy9 4+ J13 4+ Jog is used to take into account
possible crossed correlations among the three layers which could po-
tentially bring high level of systemic risk. As one can see from the
figure, simple similarity measures like the one we use is not able to
explain the formation of critical configurations. To solve the prob-
lem, we will introduce a numerical algorithm in section 6 that allows
taking into account the real roots of the systemic risk generated in
our model, which is the intrinsic nature of banks’ balance sheet man-
agement that can cause the various kinds of financial risks to which
banks are exposed to interact with and reinforce each other.

5.3 The Systemic Importance of the Securities Portfolios

In the previous sections the initial shock to the financial system was
always the bankruptcy of one single bank. In this section, we inves-
tigate how the system reacts when instead the shock consists of the
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Figure 9: The four panels shows the correlation between the Jaccard indexes Jy2, J13,
Jog, their sum J* = Jyo + Ji3 + Jo3z, and the systemic relevance parameter Rg. In
particular, the points in each panel represent a multi-layer network structure extracted
according to the algorithm presented in Section 4.2. For each structure, we measure
its systemic relevance parameter (reported on the horizontal axes) and the Jaccard
indexes (reported on the vertical axes). Correlations between the two quantities are
also reported in the graph. Results are reported for 10° different network topologies.

depreciation of the value of one or more securities. It should be re-
called that in the model banks are endowed with random portfolios.
All the securities, moreover, are characterized by the same price at
the beginning of the simulations, which for sake of simplicity is fixed
to p,(0) = 1, and the same elasticity factor a, = 0.2. In the pre-
vious subsections, the number of securities was fixed to M = 30.'2
Keeping fixed this initial configuration, we first investigate how the

12Since the initial bipartite network is random, where a link between any bank i and any
security p has a probability to exist equal to p, it is easy to see that the corresponding
network 3 of overlapping portfolios is also random, with a Erdos’ coefficient equals to p/ =
1—(1—p?)M where M is the number of securities.
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banking system absorbs a price reduction of one or more securities.
Fig. 10 shows the results. In the left side panels, the number of
defaults following a certain percentage of reduction of the securi-
ties” price is shown, respectively when the price reduction affects
only one security (top left panel), two securities (top right panel),
three securities (bottom left panel) and ten securities (bottom right
panel). In each of the graphs are reported the mean number of
defaults corresponding to different shock sizes, where the solid line
represents the situation when all the three layers are activated, while
the dashed line represents the situation when the only active layer
is [3. It is observed that if banks were completely independent from
each other in the layers [; and ls, there would be very few defaults,
especially for price shocks which are not abnormally large.'® Con-
sider, for example, the case when 10 securities are shocked at the
same time by reducing their value of 15%. Without any other con-
nections among banks apart from the common exposures, the mean
number of defaults is around 7. Meanwhile this number drastically
increases to 38 if banks are also connected through layers /1 and [.
We note that since all the securities have the initial same price, and
are all characterized by the same elasticity factor, in this random
portfolio scenario it does not play a role which securities are shocked,
since the effects are averaged out when the number of simulations is
large enough. Eventually, as one can see from the figure, for values
of the shock smaller than 5% no defaults are observed, indicating
an adequate capital buffer level for small losses in banks’ securities
portfolios.

On the right-side panel of Fig. 10 we report the tails of the
distributions of the number of defaults for a shock to the securi-
ties equal to 15%, for the cases of one, two, three and ten initial
shocked securities, respectively. The blue areas highlighted in the
graphs represent the last fifth quantile of the distributions. In the
cases of one, two and three shocked securities, the great part of the
mass of these distributions is concentrated in values close to zero,
highlighting a considerable financial resilience of the banking sys-
tem for random assets depreciations. Nevertheless, one can see in
the graphs that, also in the scenario of one security shocked by 15%
of its initial value, the shock can be amplified to destroy a large
part of the banking system.'# These findings highlight that also if

13We report in the graphs all the possible values for a shock, so from 0% to 100% of reduction
of the asset’s value; of course, this is only an illustrative simulation exercise, since in reality
depreciations larger than 20% are extremely rare.

4We note that those fat tails disappear as far as the layers I; and Iy are deactivated. We
do not report here here also those distributions, but one can see from Fig. 10 that the mean
values of the number of defaults is exactly zero for shocks equal to 15% (dashed lines in the
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the initial shock derives from a depreciation of the mark-to-market
banks’ portfolios, the multi-layered network structure is playing the
crucial role of shock amplifier.

Reduction s = 0.15, 1 security Reduction s = 0.15, 2 securities
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Figure 10: On the left side of the figure, the four panels show the number of defaults
when one, two three and ten securities are shocked; the solid lines represent the number
of defaults when all the three layers are active at the same time, while the dashed lines
represents the same results when only the layer I3 is activated (firesales contagion
effects). On the right side, the tails of the distributions of the total number of defaults
are reported, when the percentage of securities’ reduction is equal to 15%; results are
here reported for the case of one, two, three and ten initially shocked securities. The
blue areas highlighted represent the last fifth quantile of the distributions.

A particular aspect related to the banks’ portfolio structures
should be highlighted. In all the previous results, the securities
portfolios were built according to the random algorithm described
in section 4.2. It should be noted however, that since all the securi-
ties in our framework are equivalent, banks maximize their utilities
by simply allocating their funds in equal measure in all the pos-
sible available securities. In this configuration the system results
in a maximum degree of overlap of banks’ portfolios, which implies
a fully connected (i.e. complete) network in the layer /3. The di-
ametric opposite of this configuration happens when banks invest
all in different securities, which translates in an empty network in
the layer 3. In order to illustrate the impact that the degree of
overlapping portfolios has on systemic risk, we use now a number of
securities M equal to N, the number of banks. This allows for com-
paring situations ranging from banks having maximum overlapping
portfolios (precisely, when all the banks equally share their funds
among all the possible M securities), to situations where banks in-
vest their funds in only one security and there are no common expo-
sures among them. The results of this exercise are shown in figure
11. We assume that the shock is a reduction of the value of all the
M securities in the system, respectively of 5% (black line), 7% (red

left side panels), a part of the case when ten securities are shocked at the same time.
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line), 10% (blue line) and 15% (green line). In this way, for a given
shock size, all the banks have to book the same losses (in percentage
points) in all the portfolios” configuration we examine. The horizon-
tal axes of the graph reports the number ng of securities each bank is
investing in, and the portfolios are built in a way to always minimize
the degree of overlap among different banks. When ng is equal to
one, each bank has only one security in its portfolios, each different
from all the others (so there is a correspondence one-to-one between
the N banks and the M = N securities in the system). When n; is
equal to N, each bank invest its funds in all the possible securities,
and all the banks have the same portfolio structure. It is interest-
ing to note that moving along the horizontal axes from left to right
maximizes banks’ portfolio diversification (and hence reduces their
vulnerability to idiosyncratic risk) but at the same time minimizes
financial stability (it maximizes the number of defaults, and there-
fore, roughly speaking, the systemic risk). Our model highlights the
interesting duality between maximization of banks’ utility and min-
imization of systemic risk, a concept already highlighted in Beale et
al (2011) who argue that banks’ portfolios optimization can lead to
higher level of systemic risk, thereby emphasizing the necessity to
supervise systemic risk from a more global perspective.!®

6 Systemic Importance Measure

A multi-graph financial structure reveals its fragility only in case a
shock hits the system; part of our task is to show when the system
is in a critical configuration, namely a configuration which is able to
amplify a local shock to the entire financial system. We recall that,
in this paper, systemic risk reflects the possibility that a single ma-
jor events triggers a series of defaults among financial institutions
within a short time period. Among the different methodologies de-
veloped in the last years to identify systemically important banks
and their contribution to systemic risk'®, network-based measures
are receiving more and more attention, although there is no a stan-
dard measure so far which can be considered universally accepted
in the literature. The main reason for the inconsistency among sys-
temic risk measures is that they rely on different microeconomic
models for the specification of banks” behavior and the mechanisms
through which a shock can propagate within the financial system.
At the same time, network-based measures have the advantage of

15See also Tasca and Battiston (2012) for similar results.
16See e.g. Upper (2011) and Bisias et al (2012).
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Figure 11: The horizontal axes represents the number of securities in banks’ port-
folios; banks portfolios are built in a way to minimize their overlapping. The vertical
axes represent the mean number of defaults when all the securities are shocked by 5%
(black line), 7% (red line), 10% (blue line) and 15% (green line). The vertical ticks
represent the standard deviations computed over 10° simulations.

compressing a lot of information regarding direct and indirect bank
interconnections, which appeared to be crucial during the last finan-
cial crisis. A network-based representation of the banking system
is therefore crucial to understand how the single institutions share
their idiosyncratic risks with the others, and to which extent this
risk-pooling is dangerous for the system.

It is important to note that a comprehensive study of the sys-
temic risk generated from the presence of interbank connections can-
not rely only on the network structure of the financial system. The
interconnections in an interbank market provide a way for banks
to pool the unavoidable risks linked to their activities, and the in-
terbank market should in principle play a stabilizing role for the
banking system. A bank which is very connected to a major part of
the others can have a crucial positive role in this scenario if its level
of capitalization is large enough, as it can be able to absorb the local
shocks of its neighbors. Such a bank will be considered as central
in terms of spillover potential to other part of the system, but from
the economic point of view its presence is beneficial for the system,
since it reduces idiosyncratic risks of other institutions. Figure 12
clearly illustrates this notion. The panels in the figure represents a
comparison between some classical network centrality measures and
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Figure 12: The panels show a comparison between some classical network centrality
measures, and the number of defaults reported in our simulation engine following the
defaults of one particular financial institution. Each tick in the panels represents a
bank in a random-generated multi-layered network structure; the vertical axes rep-
resents a measure of centrality of that bank in layer I; (first row of panels), layer la
(second row of panels), layer I3 (third row of panel) and the superimposition of the
three layers (last row of panels); the horizontal axes represents the number of defaults
triggered by the bankruptcy of that particular bank, according to our simulation en-
gine. All the value are normalized to one, and the panels also show the correlation
among the two indexes. Results are reported for 10° random replications of the system.

ECB Working Paper 1944, August 2016

37



the number of defaults reported in our simulation engine following
the bankruptcy of one bank. The number of defaults can be used
as a proxy for the systemic importance of a bank in the system.
Since we are dealing with a multi-layered framework, we compute
four different centrality measures (which are closeness, betweennes,
eigenvector centrality and PageRank) for all the three layers sepa-
rately, and the same measures when the three layers are projected
in a single one. As can be seen from the panels, there is basically
no correlation among those network measures and the number of
defaults we obtain from our simulations. This result highlights the
necessity to develop more sophisticated measures to asses the sys-
temic contribution of each institution to the financial system, and
those measures have to take into account the articulated internal
structure of the nodes in the network (in other words, banks’ bal-
ance sheets) as well as the different mechanisms of contagion and
risk-sharing present in the banking system.

This notwithstanding, considering only banks’ balance sheets in-
formation to assess the level of systemic risk in the banking sector
is extremely restrictive. Prior to the recent financial crisis micro-
prudential supervision was based on the notion that it was sufficient
to ensure the stability of the banking sector to require institutions
to operate with an adequate level of capitalization. The recent fi-
nancial crisis, if anything, revealed that focusing only on individual
banks’ soundness is a necessary but not sufficient condition for safe-
guarding the financial system. In fact, as we will show later, the
risk-pooling mechanism, which is at the core of an interbank mar-
ket, can increase the chances of multiple failures to occur following
an initial shock. Since the process of contagion among financial
institutions, as we already highlighted, is composed of two parts,
which are an initial triggering events (for example the failure of one
single institution), and the propagation of losses and distress in the
financial system, the extent to which a local shock can propagate
and be amplified from bank to bank greatly depends also on the
structure of the banking system as a whole. To illustrate this point,
figure 13 shows a comparison between some balance sheet-related
quantities and the number of defaults following the bankruptcy of
a single institution. The figure shows that classical quantities like
banks’ total assets, total interbank liabilities, total interbank assets
and risk-weighted capital ratios do not necessarily provide useful
information regarding the systemic importance of the bank, as mea-
sured by the number of defaults its bankruptcy can trigger. In
particular, one can see from the picture that the failure of small-
sized banks usually does not trigger too many other defaults. On
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the other hand, regarding large-sized banks we find mixed results in
the sense that some of them trigger domino effects, while others do
not. Eventually, the last panel on the right-hand side shows that
there is no link between the banks risk-weighted capital ratios and
their systemic importance.

To account for the fact that neither classical centrality measures
nor balance sheet indicators are sufficient for assessing the systemic
importance of an institution, the next subsection introduces an al-
gorithm to derive the systemic contribution of each bank to the
financial system. The framework will take into account both net-
work and balance sheets information, with the final aim of (i) re-
producing the results we obtained with the simulation engine; and
(ii) visualizing the network structure in a way to highlight how the
idiosyncratic risk of each bank is distributed among the other insti-
tutions, and when this risk-sharing brings the system to an unstable
configuration.

6.1 The aggregation algorithm

The algorithm we propose in this section to study the multi-layered
financial network is based on the concept of critical link. In each
of the three layers we introduced, a link starting from node i and
pointing to node j is said to be critical if the bankruptcy of bank
¢ results in the bankruptcy of bank j. We note immediately that,
without critical links in the three layers, no contagion effect is pos-
sible, although losses can be transmitted to the direct neighbors of
the failed bank. In fact, in case the default of a single bank does not
imply any other failures, the direct and indirect counterparties of
that bank were assuming an acceptable amount of risk with respect
to their own capital buffer, and we speak about counterparty risk
(or liquidity risk, or funding risk) but not about systemic risk. We
can distinguish the conditions for a link to be critical in the three
different layers. While the detailed approach to identify critical links
is reported in the Appendix, the general ideas are presented here.
Following the definition, a link in layer /; between bank i and
bank 7 is critical if the default of bank j will induce losses that bank
7 is not able to absorb without violating the RWCR requirement. In
the computation of the threshold value for the link weight, one has
therefore to take into account, among other factors, the looses-given-
default of bank 7, the available capital of bank 7, together with all
the items in bank i’s balance sheets which can be used by the bank
to increase its RWCR. In the same spirit, a link in layer Iy between
two banks ¢ and j is said to be critical if the interruption by bank
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Figure 13: The four panels show a comparison between some banks’ balance sheets
characteristics, (namely, total assets, interbank liabilities, interbank assets, and risk-
weighted capital ratios) and a contagion index, computed as the mean value of the
number of defaults triggered after the bankruptcy of the bank with that particular
characteristics. Mean values, taken over 10° realizations of the multi-layered network,
are here used as proxy for the systemic importance of the single institutions. The
values are normalized to the maximum number of defaults reported in simulations.
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1 of the credit line to bank j will induce the failure of the borrower
bank. Eventually, a link in layer /3 between banks ¢ and j is said to
be critical if the liquidation by bank 7 of its whole securities portfolio
will produce losses to bank j which is not able to cope with.

We stress here that a link criticality depends on the micro behav-
ioral rules assumed to drive the banks into the dynamic model. This
implies that changing the banks’ behavior in the model will change
the threshold values for the link weights necessary to identify critical
links. Nevertheless, the algorithm we propose can still be used to
simplify the multi layer network structure and to identify systemic
important banks and critical configurations in the financial system.

Before introducing the algorithm for the simplification of the
multi-layered financial network, we need to introduce the follow-
ing notation: given a square-real-matrix Ay« and a set of indexes
I =iy, ,ig} (0<i; <ig <- - <ig < N), we indicate with
Ar the (N — K 4+ 1) x (N — K + 1) square-real-matrix obtained
by summing the rows and columns indicated in the set I, and by
putting the row and column arising from the sum first in the new
matrix. If the matrix A is the weighted matrix of a network, the
reduction operation just described is the aggregation of the nodes in
the set I = {iy,42, - ,ix} in one single node; this new super-node
has links to all other nodes that were connected to the original sub-
set absorbed into the super-node, and the weights on the links are
summed accordingly.

We can finally introduce the aggregation algorithm for the sim-
plification of a multi-layered financial network. We start with a
multi-layered structure & and an initial bank by for which we want
to compute its systemic importance. In the first step, s = 0, we
consider the node bg as the only one in the super-node, and in each
step s = 1,2, ... we perform the following operations:

1. We build up the matrices W}s_l, Wi_l and Wl?;_l, where I
are the nodes belonging to the super-node the step before. We
note that this is equivalent to introduce a new bank in the
system, instead of the banks in the set I;_;, whose balance
sheet is the aggregation of the K suppressed banks’ balance
sheets, and whose links are the aggregation of the in-coming
and out-coming links of the nodes in I5_;.

2. We identify the critical links in each of the three layers [y, lo
and I3 and we build up three new matrices A!, A2 and A2 which
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entries are:

Al _

8,7

1 if there is a critical link from i to j in layer [
0 otherwise
(20)

3. We find the directed tree in the unweighted, directed network
characterized by the adjacency matrix A, = Al + A2 + A3
starting from the super-node; the nodes belonging to this tree
will constitute the set I, while its edges are recorded in the set

Cs.

The algorithm ends when the size of the super-node stops in-
creasing and it happens in at most IV steps, since in the worst case
each node is absorbed in the super-node in a different step. The first
output of the algorithm is a series of sets of nodes I5 (s =1,2,--+)
which can be used to extremely simplify the multi-layer network
structure. In fact, nodes absorbed in the super-node in step s are
all characterized by the following property: they will fail if all the
nodes belonging to the set Is_; fail simultaneously, but not if any
single node in [;_ fails separately. The second output of the al-
gorithm is the series Cs of links belonging to the spanning trees
starting from the super-nodes. This series of critical links helps us
in the identification of critical paths in the system, namely multi-
dimensional paths which can bring the losses from one node in the
network to a remote region of the same network.

A multidimensional critical path has actually a meaning which
is deeper than only being a channel for the transmission of losses
through the financial system. The presence of multidimensional
paths in interbank network represents a way of risk sharing that goes
beyond the knowledge of the single banks. The idiosyncratic risk of
one single institution is shared not only with its direct counterpar-
ties, which are aware of the risk taken, but also with other players
not directly connected to the institution, and which cannot be fully
conscious of the risk-transfer represented by the critical paths in
the network. Without full knowledge of the multi-layered network
structure no banks will be in a position to exactly estimate its expo-
sure to the idiosyncratic risk of the other banks. Moreover, critical
multi-dimensional paths highlight the risk transformation process.
In fact, the deepness with which financial stress can propagate in
a financial system is extremely amplified by the ability of a bank
to absorb a risk, transform it, and share it with its counterparties
under a different shape.

Those concepts are illustrated in the following subsection where
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we show how the aggregation algorithm can be used to identify
systemic banks.

6.2 Results

To better clarify the working and the outputs of the aggregation
algorithm, we analyze one particular scenario, and we show how it
is possible to simplify the financial structure of the banking network.
This benchmark example also illustrates the origins of the non-linear
behavior in such propagation within the network.

We consider a multi-layered financial network &, and a bank bg
for which we want to know the systemic importance in &. The two
outputs of the algorithm, {/s} and {Cs}, can be used to simplify
the network structure as illustrated in Fig. 14. The figure shows the
three steps involved in the algorithm for this particular configuration
® (the first step s = 0, where the super-node is composed only by
the initial failed node, is not reported in the figure). In each step,
the super-node is highlighted in red color, and it contains all the
nodes involved in the previous steps, including the previous super-
node. The figure represents also the critical links reported by the
algorithm (blue links represent critical links in layer [;, green links
in layer I and purple links in layer [3). The algorithm reports a final
number of defaults equal to 18. In the left part of the figure one can
see the initial failing bank, by = 11, which is the only member of
the super-node in step s = 0; in step s = 1, one can see the multi-
dimensional tree on the three layers involving additional 8 defaults
as a result of the default of by = 11. In step s = 2, the super-node
aggregates all the 9 nodes already defaulted, whose simultaneous
failures in turn produce 5 further defaults. Finally, in the last step,
one can see how the simultaneous failures of the previous 14 banks
results in 4 more defaults.

Figure 14 clearly shows the non-linear nature of the contagion
problem when accounting for multiple layers of interconnectedness.
It is clear from the picture that if we repeat the same exercise but
only with layer [ activated, the total number of defaults triggered by
the failure of bank 11 will be no larger than 5 (namely banks 9, 10,
13, 21 and 7), meanwhile no defaults at all would be triggered in case
of only layer ls or I3 are active. Therefore, the non-linearity which
appears for example in Fig. 7 is due to the creation of critical paths
in the multi-dimensional space, which amplifies the range of propa-
gation of the initial shock. This highlights also the fact that when
considering the three single layers in isolation the systemic risk in
the banking system would be heavily underestimated. As the large
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Figure 14: The figure shows a representation of the outputs of the aggregation
algorithm for one particular multi-layered financial system & and the initial defaulting
bank by = 11. The color of the edges reflects their nature (blue edges belong to layer
l1, green edges to layer Iy and purple edges to layer l3). Three steps are involved
in this process; in the first one on the left, the tree shows how the failure of bank
11 can bring to default of banks 9, 10, 13 and 21 because of the losses transmitted
through layer l;, banks 26, 29 and 31 fail become illiquid, and bank 33 fails because
of its common exposures with bank 21. All these 9 nodes are then aggregated into
the super-node of step 2 (red node); the defaults of this super-node triggers other 5
failures. In the last step (last tree on the right) the 5 banks (5,7,12,14,18), aggregated
into the super-node, bring to the failure of other 4 banks.

number of defaults in the complete scenario (when all the three lay-
ers are activated simultaneously) is due to multi-dimensional critical
paths that can reach also remote banks in the system, the removal
of one layer can interrupt these critical paths and so underestimate
the number of banks involved in the propagation process. Moreover,
the identification of critical paths is necessary in order to understand
how the idiosyncratic risk taken by the single institutions can affect
the stability of the system. It is evident that there is a strong in-
teraction among the different risks embedded in our model: a well
working interbank market has to be able to properly share these
risks among the different financial institutions in such a way that
the system can absorb local shocks without propagating them to the
entire system.

We highlight here a fundamental point of the whole paper, made
clear by the example reported in Fig. 14. In the first step of the
algorithm, bank 21 plays a fundamental role in increasing the extent
to which the shock can propagate in the financial system. In fact,
losses materialize for node 21 in the form of interbank counterparty
risk. Nevertheless, the bank transmit stress to other institutions in
the form of funding and market risk. The banks behavior assumed
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in the model enables the risk to be transformed from one shape
into an other, and this transformation-and-sharing risk process is
a the very core of the high level of systemic risk we report in our
simulations.

A natural measure of systemic importance for a bank in the sys-
tem is immediately achieved through the aggregation algorithm. A
bank becomes systemically important if its failure materializes in
substantial losses for the other institutions, leading to other de-
faults and eventually a significant impact on the real economy. The
aggregation algorithm has the advantage that it does not take into
account the reasons why a bank fails: once it does, it is aggregated
into the super-node. The size of the super-node when the algorithm
converges therefore reflects the order of magnitude of the spillovers
produced by that particular bank, which in turn depends both on the
composition of the banking system (i.e. balance sheet information
are included when computing the threshold values for the critical
links) and on the multi-layered network structure itself. The size of
the super-node, which should reproduce the number of defaults ob-
tained from the simulation engine, is an approximation in two main
respects: (i) losses directly affecting the capital from different layers
(for example layer /1 and layer [3) are not summed up together to
trigger the default of a bank, but the bank will fail only if losses
from separate layers trigger the threshold for that particular layer.
This shortcut can be avoided at the price of a more complicated al-
gorithm, while we prefer to keep a good trade-off between simplicity
and interpretability, and correctness. (ii) Liquidity spirals are only
partially reproduced with the algorithm: if a bank fails at some
point in the algorithm, its borrowers in the short-term interbank
market will experience a liquidity shock, that can in turn trigger
their defaults, and so on. However, in reality (and also in our simu-
lations) banks start withdrawing liquidity before they fail, because
of liquidity needs or because they have to fulfill their Risk-weighted
Capital Ratio. This mechanism of precautionary withdrawal of lig-
uidity is not captured by the algorithm, and it is difficult to include
if we want to keep its iterative nature, which has the advantage to
be easily tractable. In light of these observations, we cannot ex-
pect that the number of defaults in the simulations will be exactly
reproduced by the size of the super-node. Nevertheless, to its ad-
vantage, the algorithm is able to simplify the network structure and
to reproduce the non-linearity we find in the simulations.

To assess the validity of the aggregation algorithm, Fig. 15
show the comparison between the results from the simulation en-
gine (number of defaults) and the size of the super-node computed
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Figure 15: In the left-side panel of the figure we report the comparison between
the number of defaults obtained from the simulation engine (horizontal axes) and the
size of the super-node as output of the aggregation algorithm (vertical axes), for 10°
random realizations of the multi-layered interbank network. For each realization, we
randomly select one of the 50 banks as initial defaulting bank. The red line is the
unitary slope dependency y = x. On the right-side panel of the figure, we report the
same results when all the three layers are activated simultaneously, and the blue line
is the best linear regression y = a - x, where a = 0.59. All the values are normalized
to the maximum number of defaults reported in the simulations.

with the aggregation algorithm. In particular, on the left-side panel
there is the comparison when only two layers are activated (namely
layer [; and l2), and in the right-side panel the same comparison
is reported when all the layers are activated simultaneously. In
both cases, there is a significant level of correlation among the two
measures, highlighting the good performance of the aggregation al-
gorithm, especially if compared to the classical network measures
reported in Fig. 12, or the balance sheet-based measures shown in
Fig. 13. The larger accordance in the case of just two active layers
has already been explained in point (i) above. In fact, the differ-
ences in the number of defaults can be attributed to those banks
who fail because they receive losses from different layers, a mech-
anism which is absent in the aggregation algorithm, that instead
aggregates losses from different counterparties only within the same
layers.

It should be noted that the main scope of the aggregation algo-
rithm is not to reproduce the number of the defaults we obtain in the
simulation engine, but approximate it with the advantage of having
some more clues about how the network structure propagates local
shocks to a global scope. Given the correlation between the simula-
tion results and the recursive algorithm, and given that there is no
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other way for the algorithm to produce non-linear effects a part of
the creation of multi-dimensional paths, we can conclude that also
in the simulations the non-linear effects are generated through the
same mechanism. We note, moreover, that the algorithm is easily
customizable to take into account different choices for the banks’
micro-behavior; in fact, the good performance of the algorithm re-
ported in Fig. 15 is also due to the choice of the criticality conditions
appearing in eq.s (22)-(26), which reflect the micro behavior of banks
in the system. Changing the banks’ micro-behavior will reflect in
different condition for the links criticality, but the algorithm can
still be used to simplify the financial network structure.

7 Conclusions and policy implications

The agent-based, multi-layered interbank network model presented
in this paper illustrates the importance of taking a holistic approach
when analysing the contagion risks related to the interconnections
between banks. The main finding is that looking at segments of
banks’ interconnections in isolation, without considering the inter-
actions with other layers of banks’ interrelationships, can lead to a
serious underestimation of interbank contagion risk. In other words,
by taking into account the various layers of interbank relations and
the interactions between them the contagion effects of a shock to
one layer can be significantly amplified, compared to the situation
where contagion risks are assumed to be confined within the specific
layer where the initial shock arose. This finding points to the ex-
istence of important non-linearities in the way bank-specific shocks
are propagated throughout the financial system.

Another important finding of the paper is that the structure of
the network and the underlying balance sheet positions of the banks
(nodes) in the network matter in terms of resilience to shocks. In
many, in fact the majority, of our simulated network structures fi-
nancial contagion is likely to be limited. However, in certain network
constellations, also depending on the financial soundness of the cen-
tral players in those networks, contagion risk is substantially more
pronounced.

Furthermore, by considering not only contagion via direct bilat-
eral exposures but also via banks’ common exposures (through their
securities holdings) we are able to demonstrate a trade-off between
risk diversification decisions and financial stability. In other words,
due to the potential contagion risks related to banks’ common expo-
sures decisions to diversify their investments in securities that may
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be optimal at the individual bank level can in fact imply higher
contagion risks for the system as a whole.

In view of these findings, the paper proposes a “systemic im-
portance” measure that accounts for the multi-dimensional aspect
of banks’ interrelations. That is, based on our multi-layered net-
work model and taking into account individual banks’ balance sheet
structure the approach provides a single measure of banks’ systemic
importance that outperforms standard network centrality measures
as well as typical balance sheet indicators.

The observation that unless a holistic view of banks’ interrela-
tions is taken the analysis of interbank contagion risk is likely to
underestimate the true contagion risk has major policy implications.
From both a micro-prudential and in particular a macroprudential
perspective the findings of this paper suggest that it is insufficient to
analyze contagion within specific market segments in isolation. In-
deed, according to the findings presented here, a major component of
the propagation mechanism that transmits losses in one bank to the
rest of the system derives from the interactions between the multiple
layers of interactions that banks have with each other. On this basis,
an immediate policy prescription emerging from this analysis is the
importance of collecting adequate supervisory and other micro level
data that allows for assessing in a holistic way the interconnected-
ness of the banking system and thus account for the non-linearities
that the existence of multi-layered interbank networks may induce.
An even more important policy implications is that the finding of
non-linear contagion potential arising due to the multitude of in-
teractions between across different types of activities (e.g. market
making, trading, funding markets, etc.) is that to mitigate and min-
imise the amplitude of such contagion effects might warrant some
form of institutional separation between key bank activities (e.g.
proprietary trading).

References

[1] Allen, F. and Gale, D., 'Financial contagion’, Journal
of Political Economy, Vol. 108, pages 1-33, 2000

[2] Bargigli, L., di Taso, G., Infante, L., Lillo, F., Pier-
obon, F.’The multiplex structure of interbank net-
works’,arXiv:1311.4798v1, 2013

[3] Battiston, S., Puliga, M., Kaushik, R., Tasca, P., Cal-
darelli, G., ’DebtRank: Too Central to Fail? Financial

ECB Working Paper 1944, August 2016 48



[11]

[12]

[13]

Networks, the FED and Systemic Risk’, Scientific Re-
ports 2, Article number 541, 2012

Beale, N., Rand, D. G., Battey, H., Croxson, K., May,
R. M., Nowark, M. A., ’Individual versus systemic risk
and the Regulator’s Dilemma’, PNAS 2011 108(31),
2011

Bluhm, M. and Krahnen, J. P. 'Default Risk in an in-
terconnected Banking System with Endogenous Asset
Markets’, CF'S Working Paper Series No. 2011/19

Bisias, D., Flood, M. D., Lo, A. W., Valavanis, S., "A
Survey of Systemic Risk Analytics’, U.S. Department
of Treasury, Office of Financial Research No. 0001, 2012

Boss, M., Elsinger, H., Summer, M., and Thurner,
S., ’'Network topology of the interbank mar-
ket Quantitative Finance,4,p. 677-684, 2004

Brunnermeier, M. K., 'Deciphering the Liquidity and
Credit Crunch 2007-2008°, Journal of Economic Per-
spectives, Volume 23, Number 1, p. 77-100, 2009

Diamond, D. W. and Dybvig P. H., 'Bank Runs, De-
posit Insurance, and Liquidity’, The Journal of Politi-
cal Economy, Vol. 91, No. 3, pp. 401-419, 1983

Delpini, D., Battiston, S., Riccaboni, M., Gabbi, G.,
Pammolli, F., Caldarelli, G. "Evolution of Controllabil-
ity in Interbank Networks’, Scientific Reports 3, Article
number 1626, 2013

Eisenberg, L., Noe, T. H., ’Systemic Risk in Financial
System’, Management Science, vol. 47 no. 2 236’249,
2001

Fricke, D., Lux, T., ’Core-periphery structure in the
overnight money market: Evidence from the e-mid
trading platform’, Kiel Working Papers 1759, Kiel In-
stitute for the World Economy, 2012

Gai, P. and S. Kapadia, 'Contagion in Financial Net-
works’, Working paper no 383/2010, Bank of England,
2010

ECB Working Paper 1944, August 2016 49



[14]

[15]

[18]

[19]

[20]

[21]

22]

23]

[24]

Georg, C. "The effect of the interbank network struc-
ture on contagion and common shocks’, DeutscheBank

Discussion Paper, Series 2: Banking and Financial
Studies No 12/2011

Gomez, S., Diaz-Guilera, A., Goémez-Gardenes, J.,
Pérez-Vicente, C.J., Moreno, Y., Arenas, A. ’Diffu-
sion dynamics on multiplex networks’, arXiv:1207.2788
[physics.soc-ph]

Hataj, G. and Kok, C. S., 'Interbank contagion using
simulated interbank networks’, Computational Manage-
ment Science, Vol. 10(2), pp. 157-186, 2013

Hataj, G. and Kok, C. S., '"Modelling the emergence of
interbank networks: an agent-based model for macro-

prudential policy assessments’, Quantitative Finance,
2015

Haldane, A. and R. May, 'Financial Systems: Ecology
and Economics’, Nature 469, 2011.

lori, G., Saqib, J., Francisco, G. P., "Systemic risk on
the interbank market’, Journal of Economic Behavior
€ Organization, Vol. 61 (2006) 525-542

Iori, G., De Masi, G., Precup, O.V., Gabbi, G.,
and Caldarelli, G., "A network analysis of the Italian
overnight money market’, Journal of Economic Dynam-
ics and Control,32,p. 259-278, 2008

Ladley, D. 'Contagion and risk-sharing on the inter-
bank market’, Discussion paper in Economics 11/10,
Department of Economics, University of Leicester, 2011

May R., and N. Arinaminpathy, 'Systemic Risk: The
Dynamics of Model Banking Systems’, Journal of the
Royal Society Interface 2, 2010.

Nier, E., Yang, J., Yorulmazer, T., Alentorn, A., 'Net-
work models and financial stability’,Working paper no
346/2008, Bank of England, 2008

Tasca, P., and Battiston, S., 'Diversification and Fi-
nancial Stability’, CCSS Working Paper CCSS-11.001,
2012

ECB Working Paper 1944, August 2016 50



[25] Upper, C., ’Simulation methods to assess the danger of
contagion in interbank markets’, Journal of Financial
Stability doi:10.1016/j.jfs.2010.12.001, 2011

[26] Gai, P., Haladane, A., Kapadia, S., ’Complexity, con-
centration and contagion’, Journal of Monetary Eco-
nomics, Volume 58, Issue 5, Pages 453470, July, 2011

A Jaccard index

Among the several measures that can be introduced to measure
similarity among set of numerical or binary data (see for example
Bargigli et al. (2013)), we use in this paper the so called Jaccard
index. Given two networks ¢g; and go, described by the weighted

matrix W' and W2, we introduce the following quantities!:

o Mj1: number of entries (i, j) which have non null values both
in the matrix W' and W?;

o Mjp: number of entries (i, j) which have non null values in the
matrix W' and null value in the matrix W?2;

o My1: number of entries (i,7) which have null values in the
matrix W' and non null value in the matrix W2

e Myo: number of entries (7,7) which have null values both in
the matrix W' and W2,

We have M1, + Mg+ Mo + Myy = N?2. The Jaccard index is then

defined as:
M

- Mg+ Mo + M
and its value ranges in the interval [0, 1]. In particular, Jio is equal

to 0 if the two networks do not have a single common link, and it is
equal to 1 if the two networks are identical.

J12

(21)

B Computation of the critical links

The identification of the thresholds for a link weight to be defined
critical is at the core of the aggregation algorithm proposed in the

TFor simplicity we assume here that both the matrices are N x N, with entries (4,5)
belonging to the real space R.
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paper. In this section we report the details necessary to compute
them. We note that the threshold values compute here depend on
the micro behavioral rules assumed for the banks. Changing the
banks’ behavior will of course change threshold values, but the ag-
gregation algorithm will still work as tool for the semplification of
the multi-layer network structure.!

o Layer l1: given the matrix W' whose entries represent the long-
term direct exposures among banks, there exists a critical link
in layer [; between two banks i and j if:

eq; — % [RWEAJ- + zl{‘fzo puw“sﬂ + wiblﬂ

1 —yw

Wj;- LGD; >

(22)
Despite the complicated form of eq. (22), its meaning is simple:
a critical link between nodes 7 and j exists if node j is not
able to absorb the losses transmitted in case of the defaults of
node ¢. In the above equation we introduce the losses-given-
default (LGD) of bank 4, computed as an estimation of the
percentage of loans that bank 7 is not able to repay in case of
its default'®. We note that the use of LGD is fundamental in
order to replicate a more realistic scenario in the simulations,
and the quality of its estimation depends on the available data.

o Layer ly: given the matrix W? whose entries represent the
short-term direct exposures among banks, there exists a critical
link in layer lo between two banks ¢ and j if:

M 5J
. 5

Wi2j> cj—i-l?—i— ZE{l-exp{—aust’;t} (24)
n=0 H

18The computation of the thresholds necessary to identify critical links represents the tricky
part of the algorithm. In fact, a part of layer [1 for which one can easily compute the maximum
losses each bank can absorb without going below the capital requirements, for the other layers
approximations are necessary.

19In our framework, this amount to:

(23)

M
ci + _ Shpp + 17 —0bf
LGD; =1—min |fnaa: [ : ZlkO - ‘ Li0] 51

l
li

Of course, better calibrations are possible depending on data availability and the dynamics
used in the model.
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The sequence {5{, 5%, e ,ng} are the roots of the equation:

‘ <
eqj + nyzo 5{1 . [1 —exp {—%s??t}]

. y y )
CRWA; + Uﬂblé + Zﬁ/fzo (sﬂ — Eﬂ) exp {—aﬂi’o‘t}

—5=0

(25)
Those roots have to found numerically since we have to im-
pose the pecking order, as in the simulator engine, and the non
linearities appearing both in the numerator and in the denom-
inator of eq. (25) make impossible to find analytical solutions.

Equation (24) states that a critical link between ¢ and j exists
if bank ¢ can force bank j to liquidate an amount of assets,
by withdrawing all its short-term funding, which will reduce
the RWCR of bank j beyond the threshold value 4. In other
words, bank j is relying too heavily on the funding services
provided by bank i. We note that the link between illiquidity
and insolvency, in the simulator engine, was properly expressed
through the map in eq. (10).

Layer [3: given the matrix of the portfolios Sy« s, whose en-
tries sL represent the securities p in the portfolio of bank i,
there exists a critical link in layer /3 between two banks 7 and j
if the liquidation of the whole bank ’s portfolio results in the
default of bank 7, namely when:

€qj — Z,]y:o(l —pZ)S‘L 5 (26)
CRW Aj 4+ wib (I3 +15) + 3L g whplsh

Where we indicated with pj, the price of the security u after
bank ¢ liquidates its portfolio, according to eq. (6).
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