EUROPEAN CENTRAL BANK

EUROSYSTEM

Working Paper Series

F. Coppens, M. Mayer,  Adyances in multivariate
L. Millischer, F. Resch,

s. sauerand K. schuize Dack-testing for credit risk
underestimation

No 1885 / February 2016

Note: This Working Paper should not be reported as representing the views of the European Central Bank (ECB).
The views expressed are those of the authors and do not necessarily reflect those of the ECB



Abstract

When back-testing the calibration quality of rating systems two-sided sta-
tistical tests can detect over- and underestimation of credit risk. Some
users though, such as risk-averse investors and regulators, are primarily
interested in the underestimation of risk only, and thus require one-sided
tests. The established one-sided tests are multiple tests, which assess
each rating class of the rating system separately and then combine the
results to an overall assessment. However, these multiple tests may fail
to detect underperformance of the whole rating system. Aiming to im-
prove the overall assessment of rating systems, this paper presents a set of
one-sided tests, which assess the performance of all rating classes jointly.
These joint tests build on the method of Sterne [1954] for ranking possible
outcomes by probability, which allows to extend back-testing to a setting
of multiple rating classes. The new joint tests are compared to the most
established one-sided multiple test and are further shown to outperform
this benchmark in terms of power and size of the acceptance region.

Keywords: credit ratings; probability of default; back-testing; one-sided
tests; minP approach; Sterne test;
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Non-technical summary

Well-performing credit assessment systems play an important role in contribut-
ing to an efficient and stable financial system. They produce adequate credit
ratings of, e.g., sovereigns, companies, or specific financial instruments.

The importance of ratings necessitates a regular evaluation of their quality,
for which several approaches exist in the literature. The comparison of estimated
with actually observed numbers of defaults within a credit assessment system,
called back-testing, is the most wide-spread method. Most of the statistical tests
used for back-testing are ‘two-sided’ because they consider over- and underes-
timation of credit risk. Such tests are relevant for example for banks, because
both sides imply financial losses for banks, either from greater than expected
losses on granted loans or from missed business opportunities and higher cap-
ital charges. In contrast, risk-averse investors or regulators tend to embrace a
‘one-sided’ perspective in that they focus on detecting underestimation of credit
risk, but are more or less indifferent with respect to credit risk overestimation.
Hence, they consider ratings as appropriate only if a rated entity’s estimated
probability of default does not indicate a better credit quality of the entity than
its actual payment behaviour. These users of ratings require ‘one-sided’ tests
that are sensitive only to credit risk underestimation and have a greater power
than two-sided tests to identify well-performing systems.

The key contribution of this paper is a set of novel one-sided statistical
tests that allow the assessment of credit assessment systems from a holistic
perspective. In particular, the proposed tests assess the quality of all rating
grades jointly, instead of the existing straightforward, but often less powerful,
approach to assess each rating grade independently and then to combine the
results.

We show that our novel joint tests have greater probability to identify mis-
calibrated credit assessment systems than the most established one-sided test,
i.e. they have a greater statistical power. Our tests outperform the existing test
also in terms of the number of possible observations of defaults that lead to
the conclusion that a credit assessment system is not well-performing. This is
an innovative performance criterion which is intuitively beneficial when little is
known about the true probabilities of debtors’ defaults produced by a miscali-
brated credit assessment system, which is usually a realistic situation. However,
the increased performance of our novel tests comes at the expense of varying
degrees of increased implementation complexity and computation time, so that
the user can choose her optimal combination of statistical performance and ease
of implementation from our set of novel tests.

Our novel tests may also be useful in other areas of applied statistical anal-
ysis, such as medical science, as the usually limited sample sizes in these areas
are more in line with our statistical assumptions than with the assumptions in
the existing literature.
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1 Introduction

Assessing the credit quality of debtors is a key task of the financial sector in
order to enable an efficient allocation of credit and to ensure the stability of any
individual financial institution as well as that of the whole financial system. To
this end credit assessment systems use quantitative and qualitative information
to produce estimates of debtors’ creditworthiness, also called ratings. These
ratings are typically associated with probabilities of default which are used not
least for pricing, risk management and regulatory purposes.

Being in the core of financial intermediation, ratings necessitate a regular
evaluation of their quality. Several approaches exist for validating the quality of
rating systems (for an overview see Basel Committee on Banking Supervision
[2005]): the most widespread method is back-testing the calibration of a rating
system by comparing ex post-realised default rates with ex ante-estimates of
probabilities. Other approaches include tests of the discriminatory power (see
Lingo and Winkler| [2008]) or the comparison of ratings from different sources,
called benchmarking (see Hornik et al.| [2007]). The focus of this paper is on
back-testing the calibration quality.

Poor calibration of credit assessments may result in either an overestima-
tion or an underestimation of credit risk. Both situations can be associated
with financial risks for the user: the underestimation of credit risks can lead
to explicit financial losses because more debtors than expected will default on
average. The overestimation of credit risks can lead to missed business oppor-
tunities, e.g. because competitors with better credit assessment systems will
be able to provide more attractive offers to potential creditworthy borrowers.
Jankowitsch et al.| [2007] and Blochlinger and Leippold| [2006] demonstrate the
impact of miscalibrated ratings systems on the profitability of banks. Hence,
the existing back-testing literature, as summarised e.g. in [Basel Committee on
Banking Supervision| [2005], focuses on statistical tests that are ‘two-sided’, i.e.
tests that detect both over- and underestimation of credit risk.

However, many users of credit assessment systems are negatively affected
only by an underestimation of credit risk, whereas they do not suffer from an
overestimation of credit risk. To the contrary, these users may even appreci-
ate fewer than predicted defaults, as they typically imply lower credit losses on
a portfolio. This applies in particular to third-party users of banks’ internal
ratings-based systems (IRBs): for example, institutions taking assets as collat-
eral that were assessed by IRBs, such as some central banks including the ECB,
do not suffer themselves from lost business opportunities following an underes-
timation of risk by the IRBB Also banking supervisors may have a tendency to
be more interested in the underestimation of credit risk than its overestimation
for financial stability reasons. Credit rating agencies use information from IRBs
for the assessment of asset-backed securities and may be particularly concerned
about lower than expected quality of the underlying assetsE| Furthermore, any
bond investor who relies on external ratings would suffer from an underestima-
tion of risk but might even profit from an overestimation as this might result in
a lower bond price but would on average not lead to the predicted losses.

The key contribution of this paper is a set of novel one-sided statistical

1The underestimation may lead to a better than expected financial risk protection for the
collateral takers.
2See, e.g. [DBRS|[2013], [Fitch| [2014], [Moody’s| [2015], and |Standard & Poor’s| [2013].
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tests for users of credit assessment systems that are primarily interested in a
potential underestimation of risks. Such one-sided tests are common for single-
dimensional problems such as the classic ‘Lady tasting tea’ experiment by [Fisher
[1935] or trials testing for positive effects of a drug against placebos (e.g. [Fisher
[1991]). However, credit assessment systems usually allocate debtors to several
rating classes, so that multi-dimensional tests are needed to test the whole
system. Similar situations may arise in clinical trials where different doses or
multiple points in time of the treatment are tested upon (see e.g. Dmitrienko
and Hsu [2004]). So far, the literature (e.g.,[Dohler| [2010]) has focused on tests
that identify an underestimation of the whole system by assessing each rating
class independently and then combining the results. These so-called ‘multiple
tests” are discussed in Section [3.2] below.

While multiple tests have their merits if the user is interested in the perfor-
mance of the individual rating classes, these tests may fail to identify miscali-
brations which are not significant for any rating class but lead to an underes-
timation of the PD when considering all classes jointly. The existing literature
on this question includes only two-sided joint tests, such as the approaches by
Hosmer and Lemeshow| [1980] or |Aussenegg et al.| [2011]. In the latter paper
the authors suggest a multivariate version of the |Sterne] [1954] test. This Sterne
test is an exact test and can replicate a number of established approximate tests
including the test of Hosmer and Lemeshow| [1980]. The basic idea behind the
Sterne test is to rank all possible outcomes, i.e. debtors’ defaults in the case of
credit ratings, by their probability of occurrence in increasing order. Starting
with the lowest probability, outcomes are assigned to the rejection region of the
test until the pre-defined significance level of the test is exploited.

In order to extend this idea also to one-sided tests, this paper introduces
three novel one-sided versions of the joint Sterne test in Section it begins
with the theoretically optimal version that maximizes the number of rejected
outcomes among one-sided tests. However, this test is computationally very de-
manding, so that two computationally more feasible alternatives are proposed:
first a one-sided iterative Sterne test that assigns the outcomes with the lowest
probability to the rejection region step by step. Second, a one-sided test that
maximizes the size of the rejection region among one-sided tests containing a
two-sided Sterne test. In addition, Section discusses an enhanced version of
the multiple test that shares important features of joint tests and is computa-
tionally more efficient than the Sterne-based tests.

In order to perform the comparison of the different tests, we measure perfor-
mance in the traditional way by the probabilities to identify a poorly calibrated
rating system, the so-called power of the tests, and in a more innovative way by
the relative size of the acceptance region of the tests. Furthermore, the com-
putation time required for the different tests is reported in order to assess how
easily they can be implemented. The comparison of the tests shows that the
one-sided joint Sterne tests perform best in terms of power for most of the stud-
ied scenarios and for all studied scenarios in terms of acceptance region size.
However, this additional performance comes at the expense of a significantly
increased computational complexity.

The following Section [2] sets out the probabilistic framework and the sta-
tistical hypotheses studied in this paper. Section [3| discusses two-sided joint
and one-sided multiple tests which have been established in the literature. The
most established one-sided test serves as a benchmark for the novel one-sided
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tests that jointly assess the performance quality of several rating classes and
are introduced in Section [dl Section [5] compares the costs and benefits of these
novel joint tests against the benchmark. Section [6] concludes.

2 Theoretical Framework

This section introduces the notation and probabilistic framework of the paper.
We apply standard notation building on |Aussenegg et al.|[2011]. Our statistical
model is given by:

C C
(Q,}'»Pp:pep)—<>< Qc»Xfc,Bc(P)ipe[Ovl]C) (1)

c=1 c=1

where Be(p) denotes the C-variate binomial-distribution and p = (p1, ..., pc) is
its vector of Bernoulli-probabilities. Furthermore X le Q. denotes the product
sample space of the individual sample spaces Q. := {0,...,n.} containing ob-
servable defaults in rating class ¢ and the o-algebra F. is the power set of the
sample space, i.e. F, := 2%,

Our model captures rating systems with a finite number of C' rating classes
and a finite number of n. obligors in each rating class c. Assuming independence
between default events within and across rating classes ¢ = 1,...,C is in line
with most of the existing literature, see e.g. [Frey and McNeil| [2003]. Under this
independence assumption the probability mass function of a default pattern
D = (D, ..., D¢) with realized value d = (di, ..., d¢) under the measure Pp, is
the product of the binomial marginal distributions:

¢ C
= [ [Pp(De = de) = [ [ Bi(desme.pe) = [ | (Z> p (1= pe)me=%,

where p = (p1, ..., pc) denotes the vector of true and latent default probabilities
and n = (ny,...,nc) denotes the vector of sizes of sample spaces.

Consistent with [Krahnen and Weber| [2001] we define a rating system as a
function: R : {companies} — {ratingclasses}. This means that a rating system
R assigns each element of a set of companies to a rating class, denoted for
example by {A, B+, B, B—,...}. The assignment of companies to rating classes
is based on an ex-ante estimated default probability denoted by p = (p1, ..., Pc)
and ensures that all obligors within a rating class are reasonably homogeneous
with respect to their estimated probability of default (PD)E|

As we aim to find statistical evidence in favor or against the calibration
quality of a rating system we next turn to hypothesis testing. In our statistical
model a hypothesis can be formulated as the subset of the parameter space P
on which the hypothesis holds true. Thus, we separate the parameter space P

3Some rating systems produce a continuum of PDs and assign an interval of PDs to a
rating class. This situation may warrant adjustments of the existing and new tests discussed
in this paper; these adjustments are not the focus of the present paper. Furthermore, p refers
to the predicted probability of default of a rating system, which does not need to be the same
as the average realised default rate over a certain sample in the model development or testing.
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into the null hypothesis Hy and the alternative Hy, where for the latter the hy-
pothesis does not hold true. Thus, we have P = Hyu H; and Hyn H; = (J. We
will formulate two hypotheses regarding the rating system’s performance. From
the perspective of loss avoidance, we call a rating system as well-performing, if
there is no under-estimation of credit risk, i.e. if the true probabilities of de-
fault are equal to or less than the predicted default probabilities. In contrast, a
rating system is under-performing if the true probability of default exceeds the
predicted one in at least one rating class. This is formulated by the following
one-sided composite (null and alternative) hypotheses:

Hy: VeeC: p.<p.. (2)
Hy: dceC: p.>p..

From the perspective of calibration quality, we call a rating system well-calibrated,
if there is no under- or over-estimation of credit risk, i.e. if the true default prob-
abilities are equal to the predicted default probabilities. This is formulated by
following two-sided composite (null and alternative) hypotheses:

Hy: VeeC: p.=p., (3)

Hy: 3dceC: p.+#pe.

For both, the one-sided and the two-sided hypothesis, we can draw two con-
clusions: either to reject the null hypothesis or not to reject it. In either case
the conclusion is based on the observed default pattern d € €2 and derived by a
statistical test. Formally, the test is a random variable

¢ (LF) — ({0,1},2001),

which maps the observation d € €2 to the probability that the test concludes to
reject the null hypothesis under this observation. Here we consider only non-
randomized tests, as it simplifies notation and randomized tests are typically
not applied in testing credit rating systems and do not seem to add significant
value. The observation space {2 can be separated into observations yielding a
rejection of the null hypothesis and observations not doing so. We denote the
rejection region of a test ¢ by R, and it is given by Ry := {d € Q| ¢(d) = 1}.
Analogously the acceptance region of a test ¢ is given by A, 1= {d € Q| ¢(d) =
0}. As a consequence, it holds that = R u A. Hence, a non-randomized test
can equivalently be defined in terms of its rejection or acceptance region:

where 1 denotes the indicator function.

The two-sided hypothesis of well-calibration is usually, but not necessarily,
tested by a two-sided test. The one-sided hypothesis of well-performance is
typically tested by a one-sided test. A test is called one-sided, if it holds for its
acceptance region A for all c=1,...,C

de A, d—e.€Q = d—e. €A,

where e, := (0,..,1,...,0) T denotes the c-th unit-vector. In words, if a one-sided
test does not reject a default pattern, then it does not reject a default pattern
with fewer or equal defaults in each rating class either.
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We next turn to type I and type II errors of a test. For p € Hy the probability
of a type I error of a test ¢, i.e. the probability to reject the null hypothesis Hy
even though it is true, is given by:

Ep¢ = Y, Pp(d), pe Ho.
dGR(p

A test is of significance level «, if it holds
Epp<a VpeH,.
Analogously, for p € H; the probability of a type II error of a test ¢ is given by:
Ep(1—¢)=1- > Py(d)= )] Py(d), pe Hi.

dER¢ dEA¢

The probability that the test ¢ rejects the null hypothesis Hy for p € Hy, i.e.
in case the alternative is true, is called the power of the test and it is given by:

Epp = ). Pp(d), pe Hi.
dER¢

The ideal test would have a power of 1 for all p € H; and a power of 0 for
all p € Hy and hence it would have a zero-probability for type I and II errors.
However, usually such a test does not exist as p cannot be observed, and hence
the test must infer information about the true p from the observation d which
was generated by some P,. Consequently there is a probability of incorrect
decisions made by the test and there is a trade-off between minimizing the
probability of type I and type II errors. In this respect it is standard practice
to bound the type I error and then minimize the type II error, i.e. to restrict
to tests of a certain level and then to choose the test with the highest power on
the alternative hypothesis.

3 A Review of Established Tests

3.1 Existing Tests for Single Rating Classes

Many of the procedures for testing the calibration quality of rating systems
that are proposed by the academic literature or applied in practice are designed
for a single rating class, see for example |Coppens et al| [2007] and |Basel Com-
mittee on Banking Supervision| [2005]. When testing the one-sided hypothesis
of equation for the performance of a single rating class it follows from the
Neyman-Pearson lemmaEI that the one-sided binomial test is the uniformly most
powerful test, i.e. it has the highest power among all non-randomized tests of
the same level a for any given alternative H;. When testing a single rating class
¢ the acceptance region of the one-sided binomial test for level « is given by all
observations not contained in the upper a-quantile of the distribution:

de—1
Z Bi(i3ne, pe) <1 —a} .

=0

7= {dceﬂc

4See for example [DeGroot and Schervish| [2002].

ECB Working Paper 1885, February 2016 7



As regards tests of the two-sided hypothesis of equation for single rating
classes, there is a number of approximate tests relying on normal approximations
as well as a few exact tests that have been proposed for calibration quality test-
ing. In the following we will concentrate only on those which lay the foundation
for section @

The “gold standard” for confidence intervals for binomial distributions is de-
fined by |Clopper and Pearson| [1934]. By inverting this procedure a calibration
quality test for the two-sided hypothesis in equation is obtained where the
rejection region is “symmetric” around the median in the sense that the accep-
tance region lies between the lower and upper «/2 quantiles of the distribution:

de do—1
% < Z B1(i;nc, Pe), 2 Bi(i;ne,pe) < 1— C;} )

i=0 =0

op = {dc € Q.

However, Reiczigel [2003] shows that the definition of confidence intervals by
Sterne| [1954] is preferable to that of|(Clopper and Pearson|[1934]. The associated
Sterne test aims at finding a minimal acceptance region, i.e. an acceptance
region containing the lowest number of default patterns possible under level a.
The acceptance region of the Sterne test can be constructed by starting with
the outcome with the highest probability of occurrence and then adding the
outcome with the next highest probability of occurrence until the sum of all
probabilities outside the acceptance region is as close as possible and just above
1 — a. The acceptance region of the Sterne test is defined as:

d. € Q.

c .—
Sterne *

2 Bl(i;ncaﬁc) >«

1€Qc: B (ine,De) <Bi(desne,De)

In general, this acceptance region need not be a connected set. For uni-modal
distributions such as the binomial distribution, however, the acceptance region
is two-sided and it becomes one-sided for highly skewed distributions.

Whereas the Sterne test is an exact test, it can also be linked to numer-
ous approximate tests. In the approximate test the binomial distribution is
approximated, typically by variants of the normal distribution.

When approximating the binomial distribution by a normal distribution,
applying the Sterne method gives the Score test. Also, a variant of the Score
test which addresses issues stemming from the discreteness of the binomial can
easily be obtained by applying a continuity correction. Finally the Wald test
and its modification by |[Agresti and Coull| [1998] can also be replicated. The
details and precise connections of these approximate tests to the exact Sterne
test are presented in [Vollset| [1993].

3.2 Existing Multiple Tests for Rating Systems

Tests for single risk classes can be used directly to test the performance quality
of a whole rating system. This involves the combination of the individual test
results, typically derived by the one-sided binomial test, using an appropriate
multiple-testing procedure in order to test the one-sided composite hypothesis
in equation . An equivalent approach can also be followed for the two-sided
composite hypothesis in equation (3)).
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This section gives an overview of multiple-testing procedures that are appli-
cable in the context of rating system Validationﬂ
Defining the individual null-hypotheses that rating class c is well-performing
by:
Hi:  pe<pe,

the hypothesis in equation for testing the performance of a whole rating
system can also be written in terms of the individual null-hypotheses:

Hy=H!n..nHS.

Hence, we will reject the global null hypothesis Hy and conclude that a
rating system is underperforming if we can reject the individual null hypothesis
H for at least one rating class c¢. As a consequence, making a type-1 error for
the global null hypothesis is equivalent to falsely rejecting at least one of the
individual null hypotheses. The probability to reject the global null hypothesis
even though it is true, is also referred to as the family-wise error rate (FWER).

3.2.1 The multiple-testing problem

A statistical phenomenon that occurs when conducting multiple tests is the
so called multiple-testing problem or alpha inﬂatz’onﬁ In order to sketch this
phenomenon consider the following example. Suppose that a rating system
consists of seven rating classes and that for each rating class ¢ = 1,...,7 the
individual null hypothesis H§ is tested at a significance level of 5%. If all
individual null hypotheses are true then the probability to falsely reject at least
one of them is given by 1—(1—0.05)" = 0.30. Hence, even though each individual
hypothesis is tested at a significance level of 5% the type-I error probability for
the global hypothesis amounts to 30%. In the context of the validation of credit
rating systems it means that even if all rating classes are perfectly calibrated the
probability to falsely conclude that the rating system is underperforming can be
substantially higher than the significance level chosen for the tests of individual
rating classes. In order to control the FWER when conducting multiple tests
one can either decrease the significance levels for the individual tests (in the
example discussed above this would imply that each individual null hypothesis
is tested at a significance level of 1—(1—0.05)"7 = 0.007) or, equivalently, adjust
the p-values of the individual tests upwards. The literature mainly follows the
latter approach.

3.2.2 Multiple-testing procedures

In order to address the multiple-testing problem as outlined in the previous sec-
tion the literature has developed a number of procedures aimed at controlling
the FWER. In this section we will shortly review two of them: the classic Bonfer-
roni adjustment and the min-P approach by Westfall and Wolfinger| [1997]. For
a more comprehensive discussion of multiple-testing procedures in the context
of the validation of credit rating systems we also refer to [Dohler| [2010].

5A more detailed description of multiple-testing procedures can be found for example in
Déhler| [2010].
®See for example |Lehmann and Romanol [2006].
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In general, multiple-testing procedures aim at controlling the probability of
one or more false rejections, i.e. the FWER, at a multiple significance level a.
The methods discussed below guarantee strong control of the FWER meaning
that it holds that FW ER < « for all possible constellations of true and false
hypotheses. In the following let pv., ¢ = 1,...,C, denote the observed p-value
corresponding to the individual null hypotheses H.

The classic Bonferroni adjustment maintains strong control of the FWER
by adjusting p-values according to: p1/C = min(C - pv., 1), where pv/c denotes
the adjusted p-value for rating class c¢. This is equivalent to increasing the sig-
nificance level a as described at the end of section [3:23] Hence, all individual
hypotheses with pv < « are rejected and the global null hypothesis is rejected
if min(pv;, ...7pvc) < «a. The Bonferroni method is derived from Boole’s in-
equality, it does not require independence between default events, and it is the
most conservative method among the multiple-testing procedures discussed in
the literature in the sense that it makes the strongest p-value adjustments.

Westfall and Wolfinger| [1997] point out that the classic Bonferroni method as
well as more recent multiple-testing procedures that build on this approach can
be especially conservativeﬂ when the p-values follow a discrete distribution. The
latter is the case in our problem setting where, as discussed above, the number of
defaults in a rating class follows a binomial distribution. [Westfall and Wolfinger
[1997] argue that power improvements can be gained by taking into account the
discreteness of the distribution of test statistics and they suggest the min-P
approach where adjusted p-values are computed as:

pu, := P(min(PV4, ..., PVe) < pue).

Here PV, denotes the p-value of rating class ¢ considered as a random variable.
Hence, the adjusted p-value for rating class ¢ is the probability that the mini-
mum p-value is smaller than the observed p-value for rating class c. If default
events are assumed to be independent, as we did in section the adjusted
p-values can be calculated as:

pv, =1 —[1—P(PV; < pve)] - ... - [L = P(PVe < pu.)].

As for the Bonferroni method, all individual hypotheses with pvc < « are re-
jected and the global null hypothesis is rejected if mln(pv17 . ,pvc) < a.

3.2.3 The Benchmark: Multiple Test

One example for the application of the min-P approach in the context of the
validation of credit rating systems is the multiple test which is used by central
banks in the euro area to validate their in-house credit assessment systems.
This section outlines the multiple test which will be used as a benchmark for
the novel one-sided joint back-testing procedures that we introduce below.

In the following we explicitly highlight the dependence of p-values on the
number of defaults: PV, = PV.(d.). The p-value for testing rating class ¢ is
given by:

PV(de) = 1= FO(d, - 1),

where F()(z) denotes the CDF of a binomial distribution with parameters
B(x;ne, pe) under the assumption that H§ is true. Under our assumption of

7Conservative in the statistical sense, i.e. leading to a small type-I error.

ECB Working Paper 1885, February 2016 10



inter-class independence of default events (see Section , the min-P adjusted
p-values are given by:
PV,

c

(dC) = meP(PVC(dC)),

where F™"P(z) =1~ [1 - P(PV; < 2)]-...- [l — P(PV¢ < x)]. Hence, the
min-P adjusted p-values can also be written as:

PV.(d,) = F™"P(1 - FO)(d, —1)).

Note that the adjusted p-values pvlC depend negatively on the number of defaults
in rating class ¢ as well as positively on the number of rating classes C' and the
PDs under H§, i.e. p., of all rating classes ¢ = 1, ..., C included in the multiple
test. Finally, we define the acceptance region A,,,;; for testing the global null
hypothesis Hy:

Amult:{d:(dl,...,dc)eQWdc: PVC/(dC)>a}. (4)

The figures below illustrate the case of two rating classes, taking two rating
classes with 90 issuers each as an example;the PDs under Hy are set to 32%
and 35% in the first and second class, respectively. Figure [1| depicts the bivari-
ate binomial probability distribution for observed defaults under Hy. Figure
represents the acceptance and rejection regions of the multiple test.

Probability of observing defaults under Hy

0.008
0.007
0.008
0.005

0.004

40 B

. F 0.002

r0.002

Mumber of defaults in rating class 2

r 0.001

r0.000

T T T T
20 40 60 &0

Mumber of defaults in rating class 1

Figure 1: Probability distribution of observed defaults under Hy in a scenario with 90
issuers in each of two rating classes and PDs under Hy set to 32% and 35% respectively.
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Acceptance/rejection regions for Multiple Test

Rej.

Mumber of defaults in rating class 2

T — Acc.
20 40 80 20
Mumber of defaults in rating class 1

Figure 2: Observation space split in acceptance (white) and rejection (red) regions in
a hypothetical two-dimensional scenario with 90 issuers in each rating class and PDs
under Hy set to 32% and 35% respectively.

3.3 Existing Two-Sided Joint Tests for Rating Systems

When testing the calibration quality of a rating system given by the two-sided
composite hypothesis of equation (3| the literature established a number of
typically two-sided tests, see e.g. [Aussenegg et al. [2011] for an overview. In
contrast to the multiple testing procedures discussed in the previous Section
these joint tests are not based on a separate assessment of all rating classes
which are then aggregated, but assess the calibration of all rating classes of the
system jointly.

Unfortunately, the “gold standard” of univariate two-sided tests, the Clopper-
Pearson test described in subsection Bl cannot be extended to a multivariate
setting as shown e.g. in [Aussenegg et al| [2011].

The concept of the univariate Sterne test, however, i.e. defining the accep-
tance region based on a ranking of outcomes by probability, can be applied to
multiple dimensions. The resulting multivariate two-sided Sterne test is defined
by its acceptance region

ASte’rne = deQ BC(i7 n, f))) > «Q
ieQ: Be (im,p)<Bc (d;n,p)

|Aussenegg et al. [2011] derive the multivariate Sterne test and show that it
converges to the test by [Hosmer and Lemeshow] [1980] which is widely used for
backtesting the calibration quality of credit assessment systems. Furthermore,
they show how the multivariate versions of the Wald and Score tests and the
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Score test with continuity correction are related to the multivariate Sterne test.
We base our novel joint tests on the Sterne test, as it is the exact version of
various approximate tests known in the literature. While the Sterne test is
precise for all sample sizes, the approximate tests are biased for small sample
sizes for which the normal distribution is not an appropriate approximation of
the binomial distribution.

Besides its close links to numerous two-sided tests, the Sterne test has an-
other appealing property: by construction the Sterne test has the smallest ac-
ceptance region among all tests of a given level. Note that this does not imply
that the Sterne test is the most powerful test for our problem setting. In fact,
for composite alternatives such as the hypotheses of equations and no
uniformly most powerful test exists. Hence, identifying an optimal test in terms
of power in our problem setting would require additional assumptions on the
composite alternative, such as (i) selecting a specific parameter vector for the
alternative: H; = p, which leads to the likelihood-ratio testE| but neglects
power under all other parameters, or (ii) the assumption of a distribution of the
parameters under Hy, implying different weights to the parameters under H;.
However, assumptions on the composite alternative are hard to justify, if there
is no prior belief about the alternative.

In light of the non-existence of a uniformly most powerful test we consider
another intuitive criterion in order to compare different tests, namely the size
of the acceptance region. A smaller acceptance region is intuitively appealing
for several reasons: first, for any given H; (simple or composite), decreasing
the size of the acceptance region by removing observations can obviously never
decrease the power of a test and will in most cases increase the power. Second,
minimizing the size of the acceptance region does not require any assumption
about H;. Consequently, for these two reasons, maximally minimizing the ac-
ceptance region of a test is beneficial in the absence of any prior knowledge
about the probability distribution of Hi. To our knowledge, this criterion to
compare tests by the size of the acceptance region is new to the literature ex-
cept for Reiczigel et al. [2008] who show that this criterion implies confidence
sets with good coverage properties outperforming conventional confidence sets.
We will further analyse this concept in section [p| when we benchmark our new
one-sided joint tests against the multiple test.

4 New One-Sided Joint Tests

Section summarizes standard joint tests which are able to assess the cali-
bration quality of all rating classes jointly by testing the composite two-sided
hypothesis of equation . In the medical statistics literature, several one-
sided tests comparing multivariate hypotheses similar to that of equation
were developed by Bartholomew| [1959], [Perlman| [1969], and |O’Brien| |[1984],
in particular for the use in clinical trials where treatment success is measured
by several indicators simultaneously. In particular, the likelihood ratio test by

8Note that according to the Neyman-Pearson lemma, the likelihood-ratio test is the most
powerful test for a simple alternative of the form: H; = p, i.e. it outperforms all tests of a
given level in terms of power under this simple specification of the alternative. Note further,
that the acceptance region of this test is bounded by a hyperplane, which depends on the
parameter p. This implies that there does not exist an uniformly most powerful test for
composite hypotheses of the form of equations and .
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Perlman| [1969] has evolved to be one of the standard procedures for such prob-
lems. Making the assumption of underlying multivariate normal distributions,
the test allows for a closed form solution for the p-value of the likelihood ratio
test. However, the assumption of a multivariate normal distribution is often
not applicable to questions involving discrete variables, in particular the credit
risk estimation problem studied in this paper where the probabilities and the
sample sizes are low. An extension of the likelihood ratio test to the multi-
variate binomial distribution would be straight forward from an analytical view
point. The practical implementation of this test, however, would still need to be
defined and would require computationally intensive procedures. To the best of
our knowledge, the literature does not include multivariate joint tests to assess
the performance of rating systems based on multivariate binomial distributions
formulated by the composite one-sided hypothesis of equation . This section
presents four novel multivariate one-sided tests for the joint performance of all
classes of a rating system, with the aim to close this gap. Of the four presented
tests the first three are one-sided variants of the Sterne test and the last an
enhanced joint version of the multiple test presented in section [3.2.3] These
one-sided tests are particularly relevant when the focus lies on loss prevention.

4.1 One-sided Optimal and Iterative Sterne Tests

As described in Section [3.3]it is not possible to find a test which outperforms all
other tests in terms of power if there is no prior knowledge about the composite
alternative. We found that the Sterne test outperforms all other tests in terms
of minimizing the size of the acceptance region. When addressing one-sided
tests, employing the same optimality criterion allows us to find an optimal one-
sided test. Hence this subsection presents the one-sided optimal Sterne test
@10ptSterne- This test is defined by the one-sided test of level a which has the
lowest number of observations in its acceptance region, i.e.

DP10ptSterne = arg m(gn{ #(Ay) | ¢ is one-sided, ¢ € D, },

where #(Ay) denotes the number of observations in the acceptance region A¢E|
This test ¢10ptSterne is optimal in minimizing the acceptance region among
all one-sided tests of the same level «, noted ®,. Thus it tends to achieve a
high power under all parameters of the composite alternative, as explained in
Section [3:3] It further serves as the conceptual basis for the one-sided variant
of the Sterne test in Section which approximates this optimal test.
However, this test is very hard to implement, since the rejection areas of all
tests for a given level must be compared. In particular, deriving all one-sided
rejections regions for higher dimensions C' is computationally very intensive.
An alternative which is easier to compute is an iterative procedure to de-
rive an acceptance region that yields a one-sided test while applying the Sterne
method. It can be summarised as follows: at each iteration step, all candidate
observations which, when excluded from the acceptance region, ensure that it is
still one-sided, are considered and the observation with lowest probability is ex-

91t is possible, though unlikely, that this test is not uniquely defined. In this case, one
chooses the test with the highest power at the alternative hypothesis H1 = 2p; this arbitrarily
chosen H; does not affect any of our results.
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cluded. The steps used to derive the one-sided iterative Sterne test ¢1rierSterne
are detailed in Annex [Al

We do not present the results of this iterative test as it is still computation-
ally rather intensive and might not be optimal in terms of having the smallest
acceptance region; it might thus not coincide with the one-sided optimal Sterne
test d)lOptSterne'

4.2 One-sided Sterne Envelope Test

Given the complexity of the computational implementation of the one-sided
optimal Sterne test described in section [4.1] we finally consider the one-sided
variant of the two-sided Sterne test: its one-sided ‘envelope’. We denote this
one-sided Sterne envelope test by ¢1envsterne. 1he intuition of this test in two
dimensions is the following: starting from a two-sided Sterne test (Figure [3))
which is optimal in terms of size of the acceptance region, we make it one-sided
as shown on Figure [l The significance level of the two-sided input test then is
increased to ensure the one-sided outcome test reaches the desired significance
level. Using a rounded top right corner potentially improves the power of the
test for a wide range of alternatives compared to the multiple test.

In order to define it formally, we first consider all one-sided tests, the accep-
tance region of which contain the acceptance region of the two-sided Sterne test
of level o/, i.e.

Q' = { ¢ | ¢ is one-sided and Ag,,,... S Ag for dasterne € Pov }

The acceptance region of the one-sided Sterne envelope test ¢1enpsterne 1S de-
fined by the intersection of all one-sided acceptance regions containing the two-
sided acceptance region, i.e.

-AlenvSterne = ﬂ "4(15

peder?

Further we set the rejection region Ricnvsterne := Q — AlenvSterne-

As the rejection region of the one-sided Sterne envelope Rienysterne 1S typ-
ically smaller than the rejection region of the original two-sided test Rogterne,
the one-sided Sterne envelope test has a lower level o than the two-sided test it
is based on, i.e.

@ = sup Ep¢lenvSterne <a.
peHy
The difference between o and o’ depends on the distributions under Hy. It
is higher, if the distance of the modes of these distributions from the origin is
larger. For a given level «, we can find the level o/ which implies a level for
one-sided Sterne envelope test close to «;, i.e.

sup Ep¢1env5’terne X Q.
pEH,

As the following proposition shows this test has appealing conceptual properties:
It is one-sided and it only rejects rating-systems which are rejected by the two-
sided Sterne test at level o.

Proposition 1. Let ¢osterne denote the two-sided Sterne test for a given level
o'. For the one-sided Sterne envelope test ¢1enySterne it holds
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(1) PrenvSterne is one-sided and it holds Ag,q,orne S Apronssiorne -

(i) G1envsterne s optimal in terms of having the largest rejection region among
all one-sided tests whose acceptance region contain the two-sided accep-
tance region, i.e.

DlenvSterne := arg mgx{ #(Rg) | ¢ is one-sided with Ag,s,.,.. < As}.

Proof. (i) As it holds Ag,g,.,..  Ag for all ¢ € &, it also holds for the
intersection and thus for ¢1envsterne-
To see that d1envsterne is one-sided, consider some d € RienpSterne. Lhere
exists some test ¢" € @Y with d € Ryr, else it cannot hold d € Rienvsterne-
Since ¢" is one-sided, it holds d + e. € Ryr, thus d + e. ¢ Ay, so
d + e. ¢ AienvsSterne, implying d + e. € Ricnvsterne for ¢ = 1,..,C. The
implication for some d € Aienysterne follows by the one-sidedness of all
¢ E @env.

(ii) For a proof by contraposition we assume the existence of some ¢¢ € ¥
with
#(R¢F) > #(R¢le7LvSte'r7Le)'

BY #(Ad)C) = #(Q) - #(M¢C) - #(R¢C) and #(AlenUSterne) = #(Q) -
#(RlenvSterne)a it fOHOWS #(Ag‘bL) < #(Alen'uSterne)~ HOWEVGI‘, by ¢c €
(I)env’ it follows AlenvSterne c A(bcy and thus #(A¢C) = #(AlenvSterne)7
which is a contradiction.

O]

After these conceptual considerations, we turn to the numerical implementa-
tion of this test. The main difficulty here is deriving the level o’ of the two-sided
Sterne test, which ensures the given level « for the one-sided Sterne envelope
test. Since the observed target a for the one-sided Sterne envelope test is essen-
tially monotonically increasing in the level o/, this can be found by numerical
iteration techniques.

Figures [3 and [4] illustrate the construction of the one-sided Sterne envelope
test in a hypothetical two-dimensional scenario with 90 issuers in each rating
class and PDs under Hy set to 32% and 35% respectively. Figure |3| depicts
the acceptance and rejection regions of the two-sided Sterne test ¢ogierne and
figure [4] the acceptance and rejection regions of the one-sided Sterne envelope
test, the test with the smallest acceptance region containing that of ¢agierne-

4.3 Enhanced multiple test

The multiple test of section [3.2.3] controls the FW ER and corrects for alpha-
inflation. However, due to the fact that each rating class is tested separately, its
acceptance region is represented by a box in the observation space (i.e. a rectan-
gle in a setting where two rating classes are tested, a cuboid with three classes
as shown on figure @ Because of this rigid specification and the discreteness of
the binomial distribution, in general it holds that FW ER < «. This allows to
remove observations from the acceptance region A,,,;; of the multiple test de-
fined in equation without exceeding the level av. We use this fact to define a
simple test, which shares features of joint tests. In order to define this enhanced
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Acceptance/rejection regions for two-sided Sterne test
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Figure 3: Two-sided Sterne test acceptance (white) and rejection (red) regions in
a hypothetical two-dimensional scenario with 90 issuers in each rating class and PDs
under Hy set to 32% and 35% respectively. A significance level of o/ = 11% was chosen
for the two-sided Sterne, leading to a significance level of o = 5% for the one-sided
envelope test.

multiple test, we consider the hyper-pyramid containing default patterns which
are accepted by the multiple test and whose total number of defaults over all
classes exceeds m

C
H(m>: de Anuie ZdzZm
i=1

Define mg as the minimum m for which Py (H(m)) < a — FWER, the accep-
tance region of the enhance multiple test then is

Amult+ = A’mult - H(mO)

Note that by construction the enhanced multiple test rejects all default patterns
that are rejected by the multiple test. It further rejects default patterns with
low performance in all rating classes. The enhanced multiple test is therefore
uniformly more powerful than the multiple test, i.e. it is more powerful for any
specification of an alternative hypothesis. This is achieved while still controlling

10Tt should be noted that the region H(mo) which is removed from the multiple test’s
acceptance region could also be chosen to be of a different shape than a hyper-pyramid. Thus
the enhanced multiple test can still be optimised in terms of power or size of the acceptance
region by considering another shape for the region H(mg). However, in a discrete context
such as here, the hyper-pyramid allows easy understanding and implementation.
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Acceptance/rejection regions for one-sided Sterne envelope test
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Figure 4: One-sided Sterne envelope test acceptance (white) and rejection (red)
regions in a hypothetical two-dimensional scenario with 90 issuers in each rating class
and PDs under Hp set to 32% and 35% respectively. The significance level is a = 5%.

the FW ER at the level o. A comparison of power of the two tests is presented
in Section .11

Figures[5| depicts the acceptance and rejection regions of the enhanced multi-
ple test in a hypothetical two-dimensional scenario with 90 issuers in each rating
class and PDs under Hy set to 32% and 35% respectively. In this scenario, the
multiple test rejects the rating system if 40 or more defaults are observed in
the first and if 42 or more defaults are observed in the second rating class.
The enhanced multiple test further rejects those observations where the sum of
defaults exceeds 72.

4.4 Stylised Comparison between Multiple and Joint Tests

This subsection presents a stylized comparison between the multiple and a typ-
ical joint test in order to illustrate cases where the two tests reach different
decisions.

It is the defining element of the multiple test that it assesses each class of a
rating system separately. The global null hypothesis of a well-performing rating
system is then rejected if at least one class is rejected, while the exact number
of rejected rating classes is irrelevant.

In contrast, a joint test assesses the joint performance of the whole rating
system simultaneously. In particular, a rather poor performance in one rating
class can be balanced by a good performance in other classes. On the other hand,
if only medium performance is found in the majority of classes the system can
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Acceptance/rejection regions for Enhanced Multiple Test

Rej.

Mumber of defaults in rating class 2

T — Acc.
20 40 80 20
Mumber of defaults in rating class 1

Figure 5: Enhanced multiple test acceptance (white) and rejection (red) regions in
a hypothetical two-dimensional scenario with 90 issuers in each rating class and PDs
under Hy set to 32% and 35% respectively. The significance level is 5%.

be rejected, although no class performs very poorly when assessed individually.
More generally, a system can be rejected by any combination of classes with
poor performance.

This is illustrated in Figure [6] which restricts to the case of three rating
classes for the ease of presentation. The figure shows the acceptance region of
the multiple (orange) and a joint test (yellow). Each axis represents the number
of observed defaults in each class: the higher these numbers, the more evidence
there is for underperformanceIEl As the multiple test assesses each class sep-
arately, its acceptance region is necessarily a cuboid, whereas the acceptance
region of the joint test is more flexible. We consider the following default pat-
terns to illustrate when the decision of the multiple deviates from a joint test:

e Point A (no defaults in classes 1 and 2) represents a case where the rating
system is rejected based solely on the poor performance in class 3. Point
A is rejected by the multiple and the joint test.

e For any point lying between the segment [BC| and the rounded region
of the yellow surface, the system is rejected based on a combined poor
performance of classes 2 and 3 by a joint test. However, these points are
not rejected by the multiple test.

e For points lying between point D and the rounded yellow surface, the

I Note that it is possible that the acceptance region of the joint test (yellow) fits perfectly
in that of the multiple test (orange) but that in the most general case (represented here) it
partially protrudes.
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Figure 6: Acceptance region of the multiple (orange) and a joint test (yellow) for
a rating system with three classes. Each axis represents the number of observed
defaults in each class: the higher these numbers, the more likely it is to fall outside
the acceptance region, i.e. is to see the rating system rejected.

combined defaults observed in all three classes would lead to a rejection
of the rating system by the joint test. Again, these points are not rejected
by the multiple test.

e Point E is a case with rather poor performance only in class 3. This
point is rejected by the multiple test, but not by the joint test, as the
performance in the classes 1 and 2 is very good.

5 Cost-Benefit Analysis of Different Tests

This Section compares the new set of joint tests proposed in Section [4 with the
multiple test of subsection [3.2 as a benchmark. It analyses if the new tests can
outperform the benchmark test with respect to the benefits that characterise a
good test in general, which are a high power of identifying underperformance
and a small acceptance region. The analysis is performed in a baseline scenario
of a standard rating system in Subsections and as well as for further
rating systems with differently-sized rating classes in Subsection Finally,
potential costs of the new joint tests in terms of a more complex implementation
and communication are compared in Subsection [5.4
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5.1 Comparison of Benefits in Terms of Power in the Base-
line Scenario

Following the standard approach in the literature, we first control the proba-
bility to wrongly reject our one-sided hypothesis of well-performance given in
equation by bounding it by the significance level of the test. In our case,
the significance level « is set to 5%. The standard second step is then to look
for the test that maximises the probability to correctly reject Hy, i.e. the power
of the test. It is important to note that the calculation of the power of a test
requires an assumption about the parameter vector for H;.

The choice of the parameter vector for H; is a specific challenge in our testing
problem. In some problems such as [van Dyk| [2014] the statistical test helps
discriminating between two well-specified hypotheses and the H; parameter
vector is uniquely defined. However, in many other testing problems, including
our tests of the performance quality of rating systems, the conductor of the test
does not know the parameter vector of Hy. In order to ensure the robustness of
our results, we compare the different tests under a variety of assumptions about
H; in this section.

5.1.1 Data Description

The baseline scenario for the comparison of the tests uses five rating classes.
Each rating class reflects one credit quality step following the Basel frame-
work for banks’ capital requirements purposes. The European Banking Author-
ity (EBA) has published draft mapping reports [European Banking Authority
(EBA)|[2015] for all credit rating agencies that are recognised by the European
Securities and Markets Authority. We use the EBA mapping report for Stan-
dard & Poor’s as the basis to assign Standard & Poor’s rating grades to the five
rating classes[]

We then use the statistics for global corporate ratings in [Standard & Poor’s
[2012] to determine the number of rated entities (‘size’) and the PD over a one-
year horizon for each rating class. Standard & Poor’s number of global corporate
ratings in 2012 and the average one-year realised default rate between 1981 and
2012 serve as proxies for the size and the PD, respectively. Table [I] shows the
realised default rates used as PDs for the null hypothesis of equation in this
section.

5.1.2 Specifications for Alternative Hypotheses

We consider three alternative specifications of the parameter vector under H;
to compare the power of the different tests with this baseline scenario. All three
specifications ensure that the power of the tests is in a range that allows a
meaningful comparison of the testsE Table [2[ summarises these specifications
and its technical details are presented in detail in Appendix

12Credit quality step 6, equivalent to a rating by Standard & Poor’s between CCC and C,
is neglected in the back-testing analysis because it is the last rating class prior to default with
only 154 rated corporates and an average default rate of 26.85%.

131f the parameter vector under Hj is chosen too close to Hg or too far from Hy, all tests
will yield a power close to the significance level a or (close to) 1, respectively. It is thus not
possible to show in this case that one test outperforms another test for a large region of Hj.
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Table 1: Null hypothesis PD (p) of equation (2]) used for the study, based on Standard
& Poor’s (S&P) global corporate ratings and other portfolios. The data are taken from
Tables 14, 33 and 51 of [Standard & Poor’s| [2012]. The realised default rate for rating
class 1 is the rounded weighted average of the realised default rate for Standard &
Poor’s rating grades ’AAA’ and 'AA’.

Rating S&P Realised

class (¢) ratings default rate (%)
1 AAA/AA 0.02

2 A 0.07

3 BBB 0.22

4 BB 0.86

5 B 4.28

Table 2: Three alternative specifications for the alternative hypothesis are studied in
order to compare the power of the different tests.

Description

H A Alternative PDs are obtained by increasing
the null hypothesis PDs of Table [I| towards
p = 1 in all rating classes as explained in Ap-

pendix

HB Alternative PDs are obtained by increasing
the null hypothesis PD of only one class at
a time.

H.C Alternative PDs are drawn from a multivari-

ate normal distribution, centered at the null
hypothesis PDs.
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Abstracting from technical details, the main difference between the alterna-
tive specifications is that the first specification H; A reflects an underestimation
of default risk in all rating classes simultaneously and the second specification
H, B assumes underestimation of default risk in exactly one rating class. The
third specification H1C allows for any combination of rating classes featuring
underestimation while giving most weight to two and three rating classes fea-
turing underestimation. Whether the underestimation of risk is more likely in
a broad range or in a small number of rating classes depends on the source
of the miscalibration. For example, if an unobservable common factor that is
not included in the rating model but correlated with the explanatory variables
turns negative, it will lead to more defaults than anticipated in all rating classes.
In contrast, the use of expert judgment for rating adjustments after their cal-
ibration to PDs may lead to systematic underestimation of risk in some (low
quality) rating classes.

In the first specification H1 A, we calibrate the parameter vector to ensure a
power of 50% for the multiple test, which serves as our benchmark. To that end
Appendix [B| describes formally how the parameter vector is adjusted in all rat-
ing classes to reach the power of 50% for the multiple test. The first specification
H; A thus reflects an underestimation of default risk in all rating classes simul-
taneously. In Figure [f] specification H; A gives most weight to default patterns
located close to point D. Table [4] shows the results for this baseline scenario.
The enhanced multiple test slightly increases power from 50% to 53.4%. The
Sterne envelope increase power significantly to 69.7%. The greater power of the
two joint tests confirms the expected result that the joint tests can better iden-
tify underperformance occurring in all rating classes compared with the multiple
test.

The second specification Hy B is similar to H; A, except that the parameter
vector is adjusted only in one of the five rating classes. For each of the five
rating classes the alternative is derived, which gives the power of 30% for the
benchmark testE For the two joint tests power is then computed as the average
of power over these five alternatives. This gives a representative estimate of
the power of the different tests if credit risk is underestimated in exactly one
rating class. The second specification H; B results in an average power of 31.4%
for the enhanced multiple and 29.6% for the Sterne envelope test (see Table
4). Thus power differences between the three tests are very small and might be
negligible. This is a promising result for the two joint tests, as intuition suggests
that they perform worse than the benchmark test because of their construction
if underperformance occurs in only one rating class (see also Section. In the
context of Figure [] this implies that default patterns similar to point E rarely
oceur.

For the third specification of the alternative hypothesis, H;C, we define a
multivariate normal distribution on the complete set of H; on the parameter
space P. The distribution, which is described in detail in Appendix [B] states
the hypothetical probability for each potential parameter of H; to be the true
parameter. Since all parameters have a positive probability, all possible param-
eters are (marginally) accounted for. For all tests power is then computed by
integrating the power of each alternative over the parameter space with this
distribution. The third specification H1C' thus reflects an underestimation of

HSee Appendix for a more formal description.
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default risk distributed over any combination of rating classes, with most proba-
bility mass reflecting a underperformance in two and three rating classes. Under
specification H;C the enhanced multiple test increases power compared with the
multiple test from 7.7% to 8.3%. The Sterne envelope increase power signifi-
cantly to 11.3%. Expressing these power increases in relative terms instead of
absolute terms shows that they are significant, as the Sterne envelope increases
the power of the benchmark test by 46.8%. The greater power of the joint tests
compared with the multiple test provides a strong robustness check to the same
result under the first specification H1A. It suggests that the one-sided joint
tests can better identify a broad range of miscalibrations resulting from any
number of rating classes in underperformance.

5.2 Comparison of Benefits in Terms of Size of Acceptance
Region in the Baseline Scenario

Section highlights that the size of the acceptance region A%%*¢ can serve as
an additional criterion on the basis of which different tests can be compared,
in particular in the case of a lacking knowledge on the alternative hypothe-
sis. Indeed, this criterion does not require an explicit specification of the pa-
rameter vector of Hi. The reduction of the size of the different acceptance
regions can be expressed in terms of the reduction of the number of default
patterns included in the acceptance region compared to the benchmark test rel-
ative to the size of the acceptance region of the benchmark test, i.e. for test j

as (Afzze - AfnZletiple) /‘ATSn,liliiple'

Table [] shows that the enhanced multiple test reduces the size of the accep-
tance region of the benchmark test slightly by 3% and the Sterne envelope test
reduces the size significantly by 72%.

In line with our findings for the power comparison, the size criterion confirms
our result that the enhanced multiple test slightly outperforms the multiple test
and that the Sterne envelope test significantly outperforms the multiple test in
the studied baseline scenario.

The analysis in the following Section [5.3]shows the robustness of these results
to different size scenarios. However, the degree of this gain has to be assessed
against the additional costs in terms of computational efficiency and simplicity
of implementation (see Section [5.4).

5.3 Comparison of Benefits in Terms of Power and Size of
Acceptance Region for Other Rating Portfolios

This section considers whether the results for the baseline scenario are robust

for rating systems whose classes have different sizes. For this purpose, we repeat

the evaluation of the baseline scenario in Section [5.1] with the same Hy given by
equation and Table 1| for a

1. portfolio of rated entities that is biased towards greater PDs, represented
by Standard & Poor’s ratings for non-financial corporations only (Scenario
‘Non-financials’),

2. portfolio of rated entities that is biased towards lower PDs, represented
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by Standard & Poor’s ratings for insurance companies only (Scenario ‘in-
surance’),

3. hypothetical small rating system with only 100 rated entities in each rating
class (Scenario ‘small’),

4. hypothetical large rating system with 5,000 rated entities in each rating
class (Scenario ‘large’).

Table [3] summarises the studied size scenarios, i.e. the distribution of obligors
per rating class.

Table 3: Studied size scenarios: number of obligors per rating class based on Standard
& Poor’s (S&P) global corporate ratings and other portfolios. The data are taken from
Tables 14, 33 and 51 of [Standard & Poor’s|[2012]. The ’small’ and ’large’ size scenarios
are hypothetical.

Size Size (n) of rating class:

scenarios 1 2 3 4 5
Baseline 374 1,330 1,637 1,047 1,471
Non-financials 100 563 1,084 836 1,277
Insurance 148 387 188 48 27
Small 100 100 100 100 100
Large 5,000 5,000 5,000 5,000 5,000

Table [] presents the power and sizes of acceptance regions of the three tests
under the four alternative size scenarios. It confirms the results of the baseline
scenario. The portfolio bias towards higher quality (Scenario ’Insurance’) or
lower quality (Scenario 'Non-financials’) rated entities has very limited influence
on the outcome of the comparison of the different tests. Abstracting from the
second specification H; B which results in very limited power differences, in all
combinations of power specification and size scenarioE the enhanced multiple
test slightly outperforms the benchmark test while the Sterne envelope test
significantly outperforms the benchmark test. The gains in power and size
reduction are less pronounced for the two hypothetical scenarios ’Small’ and
"Large’ compared to the three real-world size scenarios.

To conclude, the comparison of the different tests on a purely statistical
basis suggest that one-sided joint tests can outperform the multiple test for
most combinations of sizes and alternative hypotheses H;. The statistical gains
from joint tests appear particularly pronounced for intermediate size scenarios
and specifications of H; that are tilted towards underperformance in many or
all classes, as can be expected from the different designs of the multiple and
joint tests (see in particular Section . Furthermore, among the two studied
joint tests, the Sterne envelope test seems to clearly outperform the enhanced
multiple test. These results are qualitatively not affected by using alternative
parameter vectors p for Hy (not reported, but available upon request).

158pecification H1 B combined with the hypothetical scenario ’Small’ is the only exception.
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Table 4: Comparison of power and size of acceptance region for all size scenarios
(Table [3)) and all specifications of the alternative hypothesis. For each of the three
tests (m) multiple, (em) enhanced multiple and (ev) envelope Sterne test the power
and size of the acceptance region are given and the best performing test is highlighted
in blue.

Size (power) (size) Type
scenarios HA HB H,C  Acc. region of test
Baseline 50.0%  30.0% 7.7% 123,930 (m)
53.4%  31.4% 8.3% -3% (em)
69.7% 29.6% 11.3% -72% (ev)
Non-financials ~ 50.0%  30.0%  6.2% 42,336 (m)
52.0%  30.7%  6.5% 2% (em)
64.4% 31.1%  8.4% 67% (ev)
Insurance 50.0% 30.0%  5.4% 216 (m)
54.2%  30.6%  5.6% ~22% (em)
74.3% 31.9%  7.6% 61% (ev)
Small 50.0%  30.0%  7.3% 240 (m)
51.1% = 30.7%  7.5% -12% (em)
57.5%  29.9%  6.9% 47% (ev)
Large 50.0% 30.0% 28.4% 2,279,088 m)
50.7% | 304% | 285%  + 0% (em)
62.2% 26.5% | 35.2% -24% (ev)

5.4 Comparison of Costs in Terms of Implementation and
Communication

The comprehensive assessment of statistical tests from a practitioner’s perspec-
tive goes beyond purely statistical properties such as power or the size of the
acceptance region. The multiple test can be seen as a good test for practition-
ers: The multiple test is easily implementable in the available IT infrastructure
and has a short computation time; it can even be implemented with a standard
spreadsheet software. The multiple test is also intuitive enough to allow the
communication of the results in a simple and transparent way on the basis of a
well-founded and widely accepted methodology.

At the same time, the statistical analysis in Section [5.1] has shown that the
joint tests can improve upon the multiple test for a wide range of alternative
hypotheses H;. The R-package “validateRS” available with this papeIE makes
the tests easily implementable. This paper has developed the formal foundation
of these tests and shown that the results of the test can be easily communicated.
The joint tests, in particular the iterative Sterne test, have only some limitations
in terms of computational efficiency if the number of dimensions C, the size of
individual classes N, or some elements of the probability p under Hy become
very large. Table [5| illustrates the computation time for the different tests and
scenarios.

16The R-package can be downloaded from the Comprehensive R Archive Network https:
//cran.r-project.org/.
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Table 5: Comparison of computation time for all scenarios. Both (i) the time required
to define the test, i.e. to determine the acceptance region and (ii) the time required
to compute the power for a single given alternative hypothesis are reported for each
of the size scenarios defined in Table For each of the three tests (m) multiple,
(em) enhanced multiple and (ev) envelope Sterne test the times are compared. The
shortest computations times (market in blue) are always observed for the multiple
test.

(milliseconds)  (milliseconds)

Size Determining Power Type
scenarios accept. region computation  of test

Baseline 240 0.3 (m)
360 5.1 (em)

68,970 9.9 (ev)

Non-financials 70 0.3 (m)
170 2.0 (em)

36,380 5.0 (ev)

Insurance 50 0.2 (m)
140 1.2 (em)

1,430 0.4 (ev)

Small 40 0.2 (m)
160 1.2 (em)

1,260 0.4 (ev)

Large 60 0.3 (m)
13,970 99 (em)

1,358,500 1,334 (ev)

6 Conclusion

This paper presents a new set of one-sided multivariate tests for the ex-post
detection of credit risk underestimation of rating systems. Existing one-sided
multivariate tests are based on an assessment of the rating performance in each
of the system’s rating classes separately. The novelty of the presented tests
consists in the joint assessment of the performance in all rating classes. The
rejection of a rating system can therefore not only be triggered by a higher-
than-expected default rate in a single class but by a poor performance in any
combination of rating classes.

The new tests are shown to outperform the established one-sided multivari-
ate test by [Westfall and Wolfinger| [1997] in terms of power for a variety of
Standard & Poor’s rated portfolios. The concrete gain in power depends on the
specification of the alternative hypothesis. When compared in terms of the size
of the acceptance region, which is a novel measure that is beneficial when little is
known about the alternative hypothesis, the new tests significantly outperform
the benchmark test. However this increased performance comes at the expense
of increased implementation complexity and computation time.
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Appendix A Steps of the One-sided Iterative Sterne
Test

This Annex explains the iterative procedure mentioned in Section to de-
rive an acceptance region that yields a one-sided test while applying the Sterne
method. It can be summarised as follows: at each iteration step, all candidate
observations which, when excluded from the acceptance region, ensure that it is
still one-sided, are considered and the observation with lowest probability is ex-
cluded. The steps used to derive the one-sided iterative Sterne test ¢1rterSterne
are detailed below.

e Initial step. The methods starts by setting the acceptance region of the
test to the complete observation space i.e. Ay = . Then the the most
extreme observation d = (ny,...,n¢), which forms a corner point the ob-
servation space 2, is considered. If it holds that Pf,(a) > «, the final step
is performed and the acceptance region is set to €. If on the other hand
it holds that

Pf) (a) < a,
then d is excluded from Ay and the iteration step is performed.

e Iteration step. Let A; 1 be the acceptance region of the previous step. We
show how to derive A;. Consider all d € Q such that A; := A;_1\{d} and
R; = Q—A; define a one-sided test. Sort these observations by probability
under Pp. Let d be the observation with the lowest probability. If it holds

Pp(Ai—i\{d}) = 1 —«,

then d is excluded from the acceptance region, i.e. A; = A;_1\{d}. If
d is not uniquely defined, choose the one which gives access to more
observations with lower probabilities than d. If d is still not uniquely
defined, choose the one with lower dy. If on the contrary it holds that
Ps(A;—1\{d}) < 1 — a, the iteration stops.

e Final Stell Set AllteTSterne = -Ai—l and RlIterSterne =0 - Ai—l-

Appendix B Specification of alternative hypoth-
esis H, for power comparisons

This Annex explains in detail how the alternative hypotheses H; are derived for
the comparison of power in Section [5.1

For the first and second specification, Hi;A and HyB, we consider that
parameter value for which the power of the benchmark multiple test, equals
50% and 30% respectively for a given sample size. Therefore we parameterise
the first specification of the alternative hypothesis, Hi A, as follows

HiA: pe=(1—8)pc+s VYe=1,..C

with the one-dimensional parameter s € [0, 1]. Let ¢, be the multiple test,
which we use as benchmark test.
Now we solve for the value of s which gives a power of 0.5:
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Ep(s)(bmult = Z Pp(g)(d) = 0.9,
dER(¢7mult)

or equivalently

€ n
Z H (dz> (1= 8)pe+8)% (1 — (1 —8)pe — )" % =05

(d1..dC)ER(Fmuir) =1

For one-sided tests the power is continuous and monotonically increasing in
s. Thus s is unique. In general, to solve for s, numerical iterative methods are
required.

The parameterization of the second specification of the alternative hy-
pothesis, H1 B, works similar to H1 A except that underperformance is assumed
in exactly one of the C rating classes. Therefor we set for ¢ = 1,...,C the
alternative

HiB;: p;=(1-s(i))p; + s(i) and
Pe = ﬁc for c#1

Then s(4) is solved such that the benchmark test gives a certain power under
HlBi7 i.e.

EHlBi¢mult = Ep(s(i))(bmult = Z Pp(s(z))(d) =0.5.
dER(¢mult)

For some test ¢ power is then computed by the average over power under un-
derperformance in each class 1, i.e.

1 & 1
Power(¢) = ° Z En B¢ = c Z Ep(s(i)) ¢-
i=1 =1

For the third specification of the alternative hypothesis, H,C, we assume
the C'—dimensional normal distribution for the true parameter p, i.e.

p~N(u,X)
with mean vector p given by
Me = ﬁc
for all ¢ and covariance matrix is diagonal and given by
ch = i:lrf.l.i,%'fl(ﬁiﬁ_l - ﬁi)Q
for all ¢ and X.4 = 0 for all ¢ # d. We further condition on the event H; to

ensure a probability mass of one on H;. Thus the conditioned pdf flI#1 of the
true parameter is given by

_ fu,Z(p) : 1H1 _ fu,Sigma(p) : 1H1
P<H1) 1- HC (I)c(f)c)

c=1

£l (p) = P(p|H1)

Y
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where f,, » denote the multivariate normal pdf and ®. denotes the univariate
normal cdf of rating class c.
For a test ¢ its power is given by

E¢ = (d) df\/% (p)

peP deR¢
c
- f [T (%) ot == agfs o)
(dise. dc)eR pet o \d

In words, power is computed for each p € H; and then integrated over the given
distribution on H;. The implementation in the statistical package for R uses
Monte Carlo simulation for the numerical integration.
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