EUROPEAN CENTRAL BANK
EUROSYSTEM

Working Paper Series

Marek Jarocinski = A note on implementing the Durbin
and Koopman simulation smoother

No 1867 / November 2015

Note: This Working Paper should not be reported as representing the views of the European Central Bank (ECB).
The views expressed are those of the authors and do not necessarily reflect those of the ECB



Abstract

The correct implementation of the Durbin and Koopman simulation smoother is
explained. A possible misunderstanding is pointed out and clarified for both the basic
state space model with a non-zero mean of the initial state and with time-varying

intercepts (mean adjustments).
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Non-technical summary

Economic models often rely on unobservable, but policy relevant, time-varying variables, such
as potential output, output gap, non-accelerating inflation rate of unemployment (NAIRU),
and many others. This paper is useful for economists who want to infer the values of such
unobservable time-varying variables from observable data.

The paper discusses the technical details of an algorithm, called simulation smoother, that
is programmed on the computer and used to characterize the likely values of unobservable
variables. By definition, we can never know the values of the unobservable variables precisely,
we can only infer which values of such variables at each point of time are more, and which
are less likely in light of the available observable data. This is precisely what this algorithm
achieves.

Economists working with unobservable variables use three algorithms that build on one
another: (i) the Kalman filter, (ii) the Kalman smoother and (iii) the simulation smoother.
Suppose that the unobservable variables are related to some observed variables via a linear
model with Gaussian disturbances, and consider a sample of observed variables covering T'
periods. The Kalman filter returns the 7" means and variances of the unobservable variables,
one at each point of time in the sample, and each conditional on the information in the part
of the sample from the beginning up to that point of time. The Kalman smoother returns
the T" means and variances of the unobservable variables, one at each point of time in the
sample, and each conditional on the information in the whole sample. Hence, the Kalman
smoother characterizes the unobservable variables more reliably. Finally, the simulation
smoother generates draws of the unobservable variables from their distribution, taking into
account their means and variances at each point of time, which are available from the Kalman
smoother, but also their covariances across time, which are not available from the Kalman

smoother or filter. The simulation smoother is needed to answer questions involving the
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covariances of the unobservable variables across time. It is also used for Bayesian inference
about the unobservable variables based on the Gibbs sampler. Finally, it is used as a building
block for both classical and Bayesian inference in the cases where the assumptions of linearity
and Gaussianity are not applicable.

There exist several alternative simulation smoothers and they all, of course, produce the
same results, while using different steps. The Durbin and Koopman simulation smoother
discussed in this paper is among the fastest and most convenient to implement on the com-

puter.
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1 Introduction

Consider the state space model

Y = Zyoy &4, g0 ~ N(0, Hy), (la)
a1 = Thoy + Remg,  me ~ N(0,Qy), t=1,...,T, and (1b)
ay ~ N(ay, Pr), (1c)

where y; is the observation vector, «; is the unobserved state vector, and ; and 7, are vectors
of disturbances uncorrelated at all lags. The matrices Z;, Hy, Ty, Ry, Q¢, Py and vector a; are
assumed to be known. For further details and illustrations of this model see, e.g., Durbin
and Koopman (2012).

A simulation smoother is an algorithm for drawing the states a = (af,...,a%), or
the disturbances (€},71], ..., €, nr)’, from their distribution conditional on the observables
y = (v}, ...y%)". This note explains the implementation of the Durbin and Koopman (2002)
simulation smoother for this model, pointing out a possible misunderstanding. The mis-
understanding may arise when drawing the states. It does not arise when drawing the

disturbances.

2 The correct implementation

This section explains how to implement Durbin and Koopman’s approach to drawing o con-
ditional on y in the model (la-1c). Let us call this algorithm ‘Algorithm 2a’ to differentiate

it from their Algorithm 2.

Algorithm 2a. (modified from Durbin and Koopman (2002) Algorithm 2, p.607)

Step 1. Draw o and y* by means of recursion (1a-1b), where the recursion is initialized
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by a draw of ~ N(0, Py).
Step 2. Construct the artificial series y* =y —y* and compute &* = E(a|y*) by putting
y* through the Kalman filter and smoother.

Step 3. Take & = &* + at. & is a draw from the distribution of o conditional on y.

An alternative implementation of this algorithm, which is also correct, uses (la-1c) for
the simulation of y*, at in Step 1 but then uses the model with ay ~ N(0, P;) to compute
the conditional expectation &* = E(a|y*) in Step 2.

The value added of this note lies in stating the above algorithm explicitly and in partic-
ular, in pointing out that a; needs to be reset to 0, i.e., the initial condition ay ~ N(ay, P)
in (1c) needs to be replaced by a; ~ N(0, P;) either in Step 1 or in Step 2. Durbin and
Koopman (2002) state Algorithm 2, which is slower, and only suggest Algorithm 2a infor-
mally without stating it explicitly. In particular, they do not warn the reader that a; should
be reset to 0 either in Step 1 or in Step 2, which gives rise to a possible misunderstanding
that the unmodified model (1a-1c) can be used both in Step 1 and in Step 2.

Two conditions have the potential to render the above misunderstanding immaterial.

1. Diffuse initialization. Durbin and Koopman (2002) prove in their Appendix 2 that the
diffuse elements of a] can be set equal to arbitrary quantities, hence the values of a;

corresponding to these elements do not matter.

2. Zero mean. For the elements of o] that have a zero mean the correction obviously

does not matter, since the corresponding values of a; equal 0 anyway.

Therefore, the misunderstanding is immaterial when all the elements of a; are either diffuse

or have a zero mean.
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In a model with intercepts another modification of Algorithm 2 is needed. Suppose the

model is given by (1c),

Y = dt -+ ZtOét + & & v N(O, Ht) and (2&)

a1 = ¢ + Tyou + Ry, e ~ N(0,Qy), (2b)

where d; and ¢; are intercepts that are known and may change over time. The remaining
quantities are defined under equations (la-1c). Algorithm 2a can also be used with this

model, but the intercepts d; and ¢; should be reset to 0 for all ¢ either in Step 1 or in Step 2.

3 A formal justification

I now provide a formal justification of Algorithm 2a. This algorithm assumes

a Ha Zaa Za ot 0 Zaa Ea
~ N : Y and ~N , 1. o

Y Hy Yoy Ly y* 0 Yoy Dy

where the unconditional moments jiq, fly, Yaa, 2oy and X, are functions of Z;, Hy, T}, R,
Q, P1, a1 (¢4, dy if applicable) implied by (la-1¢) or by (2a,2b,1¢). Note, in particular, that
resetting pu, and g, to 0 is achieved by resetting a; and, if applicable, ¢, and d; to 0.

A draw & is generated as

&= E(aly") +a’ = o+ 0,3y — yT — ) +a
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The first and second moments of & conditional on y are

E(aly) = pa + SayXy, (v — 1ty) = E(aly) and

V(@ly) = Say By 18, 18— 28, SIS 4 B, = B — Doy T 180 = V(aly).

Hence, the first and second moments of & are correct and & is indeed a draw from p(aly).
Note, however, that setting the mean of (o, y™) to (fa, ty) due to the discussed misunder-
standing would have changed the value of E(aly) and hence would have produced a draw

from an incorrect density.

4 Numerical example

I illustrate the effect of the possible misunderstanding using the Watson (1986) model as an
example. Watson fits the following model for the real Gross National Product (GNP) of the

United States, y;, observed quarterly from 1949 to 1984.

Yt = Tt + Sty (4a)
7 =0.008+7_1+n7, n ~N(0,0.0057%) and (4D)
G = 1.501g_1 — 0.577g,_o +n5, 15 ~ N(0,0.0076%), (4c)

where 7; is a trend and ¢; is a cycle, both unobservable.

Table 1 reports the mean and standard deviation of 10,000 draws of trend GNP, generated
with several setups. First, I assume that ¢; comes from the ergodic distribution of ¢; and
that 71 is centered at the last value of GNP before the start of the sample, with the ergodic
variance of ¢;. This is a natural assumption exploiting the stationarity of ¢;. I generate

10,000 draws using Algorithm 2a. I then generate 10,000 draws with an incorrect variation
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of this algorithm, where I never reset a; and ¢ to 0 (neither in Step 1 nor in Step 2). It
is clear from Table 1 that the misunderstanding seriously distorts the simulation smoother:
the mean of the trend GNP in the first period, 71, is 6.24 with the correct algorithm (column
1) and 6.14 with the incorrect variation (column 2). After 50 quarters the initialization
matters less and the means of trend GNP in period 50, 759, obtained with Algorithm 2a and
its incorrect variation are then more similar, 6.66 vs 6.65.

Next, I use the diffuse initialization of 7, while keeping the ergodic distribution for ¢. The
diffuse initialization of 7 changes the numerical results so little that they are again the same
as those in Table 1 up to the reported precision. Let me stress the finding that the results
obtained with Algorithm 2a continue to differ from the results obtained with the incorrect
variation, and hence the misunderstanding matters in model (4a-4c) even with the diffuse
initialization of 7. This is because when this model is cast in form (la-1b) the constant term
of equation (4b) is a state with a non-zero and non-diffuse initialization and the failure to
reset aj to 0 distorts the simulation smoother. Equivalently, when this model is cast in form
(2a-2b) all the states are zero-mean or diffuse, but the failure to reset ¢; to zero distorts the

simulation smoother and yields the same numerical results.

Table 1: Trend GNP in Watson’s model based on simulation smoothers. Mean, standard
deviation in parenthesis.

Algorithm 2a  No resetting of aq, ¢;

7 6.24 (0.02) 6.14 (0.02)
50 6.66 (0.02) 6.65 (0.02)

5 Conclusion

This note discusses the implementation of the Durbin and Koopman algorithm for drawing

the states conditionally on the observables in a state space model while pointing out a
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possible misunderstanding. The misunderstanding matters when the initial state vector is
not all zero-mean or diffuse, or when a nonzero intercept is present, and leads to incorrect
draws of the states, especially in the beginning of a sample. By clarifying the possible
misunderstanding, this note will hopefully encourage an even wider use of the Durbin and

Koopman algorithm by practitioners.
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