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Abstract

Energy inflation is a major source of headline inflation volatility and forecast errors, therefore

it is critical to model it accurately. This paper introduces a novel suite of Bayesian VAR

models for euro area HICP energy inflation, which adopts a granular, bottom-up approach

– disaggregating energy into subcomponents, such as fuels, gas, and electricity. The suite

incorporates key features for energy prices: stochastic volatility, outlier correction, high-

frequency indicators, and pre-tax price modelling. These characteristics enhance both in-

sample explanatory power and forecast accuracy. Compared to standard benchmarks and

official projections, our BVARs achieve better forecasting performance, particularly beyond

the very short term. The suite also captures a sizable variation in the impact of commodity

price shocks, pointing to higher elasticities at higher levels of commodity prices. Beyond

forecasting, our framework is also useful for scenario and sensitivity analysis as an effective

tool to gauge risks, which is especially relevant amid ongoing energy market transformations.

JEL Classification: C32, C53, E31, E37
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Non-technical summary

This paper proposes a new Short-Term Inflation Projection (STIP) model suite to obtain fore-

casts of euro area energy inflation. The suite consists of Bayesian VAR (BVAR) models with the

following characteristics: (i) a bottom-up approach with a fine disaggregation of energy items;

(ii) the inclusion of higher frequency indicators; (iii) modelling of pre-tax prices in absolute

(rather than percentage) changes; and (iv) features to account for both abrupt and persistent

changes in volatility.

Granular modelling is important because HICP energy components vary substantially in

terms of properties: frequency of available explanatory variables, taxation, degree of competition

and regulation and main drivers. For instance, consumer car fuel prices are closely linked to

developments in refined petroleum and diesel prices, where the pass-through from the latter

to the former is full and relatively quick. In contrast, the pass-through from wholesale to

consumer gas prices is more delayed, reflecting various shares of regulated prices and rules on

price adjustment across the euro area. Electricity prices are also subject to a different share and

type of regulation in many countries and are often adjusted less frequently.

The proposed models incorporate a wide range of drivers of consumer energy prices, including

crude and refined oil prices, natural gas prices, producer prices of energy and applicable taxes,

which could also include carbon prices. In fact, another advantage from implementing a granular

modelling strategy is the possibility to better assess the impact of some measures in the Fit-

for-55 package, as they affect various components in different ways. For example, EU Emissions

Trading System (ETS) 2 will be introduced in 2027 and will affect transport fuels and building

heating.

The proposed modelling framework also incorporates features to deal with the relatively

unruly behaviour of energy prices. The BVARs feature stochastic volatility in the residuals and

also handle extreme observations via “outlier correction”. The framework also effectively deals

with the so called ragged edge of the data on account of differences in publication delays between

the indicators, an important feature in real-time applications. It also allows for seasonal terms

in certain energy components.

Modelling HICP energy in a more granular fashion, by specifying models for the various

sub-components, brings forecast gains. The STIP forecasts are evaluated using real-time data

vintages from beginning 2014 to mid-2023. The forecasts are produced once per quarter at the
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cut-off dates corresponding to those in the Eurosystem/ECB staff macroeconomic projections.

The forecast evaluation ascertains that on average and for the full sample, the newly proposed

STIP models outperform the Eurosystem/ECB staff macroeconomic projections, for all forecast

horizons except for the very short term. The better performance of the STIP models compared

to the projections can be attributed to their better performance after the pandemic. The

STIP forecast performance is also better compared to simple model benchmarks, such as an

autoregressive model and a simple BVAR including HICP energy inflation and oil price growth.

This modelling framework can be also used to shed light on the transmission of energy price

shocks in different markets to consumer energy prices. The estimated responses to oil price

shocks are immediate and strong, while responses to wholesale natural gas price shocks tend

to be more delayed. In both cases, the strength of the responses varies with the level of the

underlying energy commodity prices, with the pass-through being stronger when the level of

commodity price is higher.

Our results have important implications for practitioners, but also for policymakers, given

that accurate inflation forecasts are key for monetary policy. We show that when it comes

to forecasting the energy component of HICP it pays off to implement a granular, bottom-up

approach. We underscore the importance of conditioning assumptions for the paths of energy

commodity prices, when trying to get the future inflation right. Energy prices have been an

important source of forecast errors and will continue to be one. We show that even if a model can

accurately explain consumer energy prices conditional on the developments in oil and natural

gas prices, the challenge comes from predicting the latter. We also stress that even if forecasting

energy remains inherently challenging, having a model that does a good job in-sample is useful

for scenario and sensitivity analysis as an effective way to gauge risks. It is important for policy

makers to grasp the implications of possible paths of oil and gas prices for consumer prices and

such exercises are regularly conducted. Furthermore, in the context of the increased pace of the

green transition, models for energy prices are key for the quantification of the inflation effects

of measures such as carbon taxes under the ETS2.

Finally, the recent energy crisis highlighted the need to continuously adapt forecasting mod-

els. We find that features such as outlier corrections and stochastic volatility are important

when dealing with post-pandemic data. Looking forward, ongoing structural changes in the

energy markets are bound to create new challenges for forecasting energy prices. These struc-

tural transformations due for example to carbon prices, renewable energy sources, de-coupling
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of electricity prices from gas in the long run, can be also incorporated in the proposed STIP

models. The models could be also implemented at the country level, in particular for the most

challenging components such as electricity and gas, for which the price setting mechanisms differ

between countries.
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1 Introduction

Energy inflation is volatile and notoriously hard to forecast. This fact makes it the key source of

headline inflation forecast errors. This is why a continuous improvement of forecasting models

for energy prices is an important task in a central bank and beyond.

Energy is an important driver of total inflation level, covering around 10% of HICP basket

in the euro area. In certain episodes it has played a dominant role, such as during the global

financial crisis of 2008-2009 or at the onset of the COVID-19 pandemic and during the subse-

quent recovery, see Figure 1. For example, annual rates of change in HICP energy reached an

unprecedented level of 44.3% in March 2022, contributing around 60% of headline inflation. At

the same time HICP energy has been the key driver of the volatility of inflation. Compared to

other inflation components, HICP energy is more volatile and linked to movements in interna-

tional energy commodity prices. This makes HICP energy harder to forecast. In the euro area

most of the Eurosystem/ECB staff inflation projections errors come from energy prices, and in

particular are related to the assumed (future) paths for energy commodity prices (Chahad et al.,

2022, 2023).1

Figure 1: Contribution to euro area HICP annual inflation by main component, in p.p.

We propose a new Short-Term Inflation Projection (STIP) model suite to obtain forecasts of

euro area energy inflation. We adopt a granular, bottom-up approach and we fit a Bayesian VAR

(BVAR) model to each of 7 subcomponents of HICP energy: petrol, diesel and liquid fuels, gas,

electricity, heat energy and solid fuels. The models incorporate key features for energy prices:

1The forecast errors in energy prices have also implications for forecast accuracy of other components of
inflation given that many goods and services have energy inputs.
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the inclusion of higher frequency indicators; modelling of pre-tax prices in absolute (rather than

percentage) changes; and stochastic volatility and outlier correction to account for both abrupt

and persistent changes in volatility.

We model HICP energy in a bottom-up fashion, as the various components differ substantially

in terms of frequency of available explanatory variables, applied taxation, degree of competition

and regulation or main drivers. For instance, car fuel prices are closely linked to developments in

refined petroleum and diesel prices, whose pass-through to consumer prices is full and relatively

quick (Meyler, 2009). In contrast, the pass-through from wholesale to consumer gas prices is

more delayed (Cornille and Meyler, 2010; Kuik et al., 2022), as the latter adjust in a more

sluggish way, also given a notable share of regulated prices in some countries of the euro area.

Electricity prices are also subject to a different share and type of regulation across the euro

area and are often adjusted less frequently. Our models incorporate a wide range of drivers

of consumer energy prices, including crude and refined oil prices, natural gas prices, producer

prices of energy and applicable taxes (which could also include carbon prices).

The framework incorporates several features that are key when modelling energy prices. In

order to obtain a timelier signal for the monthly inflation, we exploit information in weekly

indicators for car fuels and liquid fuels. We also apply specific transformations to our data in

order to establish more robust links between consumer energy prices and their drivers. More

precisely, we use pre-tax data where available as excise duties and VAT play a sizeable role

for consumer energy prices (unlike for other HICP components).2 We re-attribute taxes to the

forecasts ex-post, assuming constant paths over the future. Furthermore, in line with previous

findings (see e.g. Bachmeier and Griffin, 2003; Meyler, 2009) we model absolute changes in the

price indices as opposed to percentage changes as is common for other inflation components.

This reflects the observation that refining and distribution margins are broadly stable (and not

applied as a percentage of the input cost). This transformation, combined with the fact that

excise duties are charged per unit rather than ad valorem, implies that the elasticity of consumer

energy prices with regard to oil or natural gas prices depends on the level of the latter. As there

is a large share of per unit “add ons” such as excise duties or refining and distribution margins, a

certain percentage change in the oil or gas price leads to a lower percentage change in consumer

energy prices when oil or gas prices are low compared to when they are high.

2Gas and electricity include also other taxes such as system charges, which could become more relevant in the
future (Kuik et al., 2022).
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Our proposed modelling framework also incorporates features to deal with the relatively

unruly behaviour of energy prices. The BVARs feature stochastic volatility in the residuals

and also handle extreme observations via “outlier correction” in the spirit of Stock and Watson

(2016) and Carriero et al. (2022b). To deal with the so-called ragged edge of the data, which

arises in real-time applications on account of differences in publication delays between various

indicators, the model is cast in a state space representation and forecasts are obtained using a

simulation smoother (see e.g. Durbin and Koopman, 2002; Bańbura et al., 2015). The model

also allows for seasonal terms in certain energy components.

Despite the fact that the use of BVARs is now standard in the literature on inflation fore-

casting (Giannone et al., 2014; Domit et al., 2016; Angelini et al., 2019; Bańbura et al., 2021;

Bańbura et al., 2024; Crump et al., 2025, among many others), to our knowledge this is the first

study to evaluate the merits of BVARs to forecast HICP energy based on its subcomponents.3

Our paper is related to the literature on forecasting inflation using a bottom-up approach,

i.e. forecasting inflation subcomponents and aggregating them to construct an overall (headline)

inflation forecast (Espasa et al., 2002; Roma et al., 2004; Hubrich, 2005; Hendry and Hubrich,

2011; Bermingham and D’Agostino, 2014; Giannone et al., 2014; Sokol et al., 2020).4 However,

most studies concentrate on analysing forecasts of headline and core HICP inflation and only

a limited number of papers evaluates forecasts also for subcomponents. Furthermore, when

disaggregation is considered, it usually does not go beyond (total) HICP energy 5. For instance,

Roma et al. (2004) and Hubrich (2005) provide a forecasting evaluation based on five components

of headline HICP. In contrast to the evidence provided by academic papers, practitioners often

use more granular models to obtain a timelier and more precise signal for the dynamics of

consumer energy prices. It is because simple models with total energy and oil prices cannot

capture the complexity of energy markets and fully exploit the available information. In addition,

more detailed models are needed to evaluate the implications of the ongoing and expected

structural changes in energy markets, including the changing relative importance of different

3Another class of models popular for forecasting inflation is factor models, see e.g. Stock and Watson (1999),
Faust and Wright (2013) or Modugno (2013). In case of HICP energy the set of relevant predictors is however
relatively limited. In addition, as shown in e.g. Bańbura et al. (2015), forecasting performance of both classes of
models is often similar.

4Our paper also contributes to literature on short-term forecasting or nowcasting of inflation using high-
frequency data (Bachmeier and Griffin, 2003; Lenza and Warmedinger, 2011; Modugno, 2013; Monteforte and
Moretti, 2013; Marsilli, 2017; Knotek and Zaman, 2017, 2023; Aliaj et al., 2023). Baumeister et al. (2015) use
weekly data to forecast oil prices.

5Knotek and Zaman (2017) and Baumeister et al. (2017) propose models for forecasting gasoline prices in the
United States, but they do not consider other energy components.
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energy source or the impact of various climate change mitigation measures.

We evaluate the forecast performance and the fit of the models using real-time data vintages

covering the period March 2014 to June 2023. We produce forecasts once per quarter, at the

cut-off dates corresponding to those in the Eurosystem/ECB staff macroeconomic projections

(labelled (B)MPE).6 This allows us to compare the models’ performance to a hard-to-beat bench-

mark, namely the Narrow Inflation Projection Exercise (NIPE) forecasts. These are monthly

forecasts of HICP at disaggregated level prepared as part of the (B)MPEs. They are produced by

the National Central Banks of the Eurosystem for their respective country and rely on detailed

information, models and judgment (ECB, 2016). We also compare the suite’s performance to

simple model benchmarks, such as an autoregressive model and a simple BVAR including HICP

energy inflation and oil price growth.

We evaluate the models in terms of unconditional forecasts, as well as of forecasts conditioned

on (B)MPE assumptions for future paths of oil and gas prices (in euro). The latter setting

is relevant when we benchmark the models against the NIPE forecasts, which rely on such

conditioning information. In order to evaluate the fit of the models, we also conduct a recursive

counterfactual exercise in which we condition on the realised paths of commodity prices.

The real-time forecast evaluation ascertains that on average and for the full sample, the

newly proposed STIP models outperform the NIPE for all forecast horizons except for the very

short term. This is interesting as the projections often have an advantage in terms of available

information.7 The better performance of the STIP compared to the NIPE can be attributed to

its better performance after the pandemic. On a pre-COVID sample the STIP models beat the

simple bi-variate BVAR including oil prices, but they do not outperform the NIPE.

Conditioning on the paths for oil and gas prices assumed in the (B)MPEs does not help

apart from the very short term, as unconditional STIP forecasts are better than conditional

ones for horizons longer than 3 months. This underscores the importance of the accuracy of

such assumptions when forecasting consumer energy prices.

The counterfactual exercise, conditioning on the actual path of oil and wholesale gas prices

shows that the model does a good job in explaining consumer energy prices when their deter-

minants are known and going granular pays off compared to a model for total energy inflation.

6For explainers on (Broad) Macroeconomic Projections Excercises, see ECB (2016) and https://www.ecb.

europa.eu/pub/projections/html/index.en.html.
7For example, flash estimates for HICP for certain countries are available before the euro area aggregate data

is released. Often also information on future changes in regulated prices or taxes is incorporated.
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The in-sample fit worsens in the high inflation period, especially for gas and electricity prices,

suggesting the presence of some structural changes, non-linearities or other factors not captured

by the model.

The modelling framework can be also used to shed light on the transmission of wholesale

energy price shocks in different markets to consumer energy prices. We produce impulse response

functions at different levels of oil and natural gas prices. The estimated responses to oil price

shocks are immediate and strong, while responses to natural gas price shocks tend to be more

delayed and muted. For reasons mentioned above, despite the models being linear, the responses

are level dependent whereby a higher level of energy commodity prices implies a stronger pass-

through. In particular, during the inflation surge period, the pass-through of gas commodity

price changes had on average doubled compared to a pre-pandemic sample.

Our results have important implications for practitioners, but also for policymakers, given

that accurate inflation forecasts are key for monetary policy. We show that when it comes

to forecasting the energy component of HICP it pays off to implement a granular, bottom-up

approach. We underscore the importance of conditioning assumptions for the paths of energy

commodity prices, when trying to get the future inflation right. Energy prices have been an

important source of forecast errors and will continue to be one. We show that even if a model

can accurately explain consumer energy prices conditional on oil and natural gas prices, the

challenge comes from predicting the latter. In that respect, we find that including information

on futures prices of energy commodities does not lead to systematic improvements in forecast

accuracy for consumer energy prices. Alternative approaches to derive such conditioning paths

could be used, see e.g. Baumeister and Kilian (2014), Van Robays and Belu Mănescu (2014),

Baumeister et al. (2024a) or Baumeister et al. (2024b).8

We also stress that even if forecasting energy remains inherently challenging, having a model

that does a good job in-sample is useful for scenario and sensitivity analysis as an effective way

to gauge risks. It is important for policy makers to grasp the implications of possible paths of

oil and gas prices for consumer prices and such exercises are regularly conducted.9 Furthermore,

8Baumeister and Kilian (2014) show that VAR models can provide more accurate forecasts for (real) oil prices
compared to oil futures prices and no change forecasts. Van Robays and Belu Mănescu (2014) propose a four-
model forecast combination approach to deal with instability in relative forecast performance. Baumeister et al.
(2024a) provide a comprehensive analysis of the forecastability of the real price of natural gas in the United
States and find considerable improvements when using a six-variable BVAR model that includes the fundamental
determinants of the supply and demand for natural gas. Baumeister et al. (2024b) propose a model based on
Bayesian additive regression trees to evaluate scenarios and risks of tail events in the global crude oil markets.

9The Eurosystem/ECB staff macroeconomic projections regularly publish sensitivity analyses with respect to
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in the context of the increased pace of the green transition, models for energy prices are key for

the quantification of the inflation effects of measures such as carbon taxes under the Emissions

Trading System (ETS) 2.10

Finally, the recent energy crisis highlighted the need to continuously adapt forecasting mod-

els. We find that features such as outlier correction and stochastic volatility are important when

dealing with post-pandemic data. Looking ahead, ongoing structural changes in the energy

markets are bound to create new challenges in the prediction of energy prices.

2 Econometric framework

The energy block is modelled deploying the same class of models for each individual component,

namely a Bayesian Vector Autoregression (BVAR) featuring two key ingredients: (i) stochastic

volatility and (ii) model-based adjustment for outliers. These two elements allow for both

persistent and transient changes in volatility, which may give rise to extreme realisations.

Modelling stochastic volatility (feature (i)) has been found important for forecasting with

BVARs, see e.g. Clark (2011) or Clark and Ravazzolo (2014). Baumeister et al. (2022) find that

allowing for stochastic volatility leads to considerable improvements in forecast accuracy for oil

prices, especially at longer horizons. In view of the recent volatility, Carriero et al. (2022b)

find that allowing for additional transitory changes in variance (feature (ii)) leads to forecast

improvements. Bańbura et al. (2024) show the importance of both features when forecasting

(total) inflation in the US and in the euro area with BVAR models.

Following Carriero et al. (2022b), stochastic volatility is modelled using the Cholesky fac-

torization of the residual variance-covariance matrix and outliers are handled by introducing

a discrete mixture representation originally proposed by Stock and Watson (2016). A similar

econometric specification has been applied in Bańbura et al. (2024).

alternative energy commodity price paths whereby the alternative paths are derived from the lower and upper
percentiles of the option-implied neutral densities for both oil and gas prices.

10The model suite proposed in this paper can be used, for example, to quantify the impact on inflation of the
ETS2 under different assumptions on the prices of the emissions, see e.g. Box 2 in the December 2024 report on
the Eurosystem staff macroeconomic projections for the euro area (ECB, 2024).
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2.1 Model

For any time period t ∈ [1, T ] the VAR reads:

yt =

p∑
i=1

Biyt−i + Cxt + νt, with νt ∼ N (0,Σt), (1)

where yt is an n × 1 vector of endogenous variables, B1, ..., Bp are p matrices of dimension

n×n containing the autoregressive coefficients, p is the number of lags, xt is an m× 1 vector of

exogenous variables (e.g., constant terms, seasonal dummies), C is an n×mmatrix of coefficients

and νt is an n× 1 vector of residuals with zero mean and variance-covariance matrix denoted by

Σt. Notice that although the BVAR coefficients are assumed to remain constant, the volatility

of the residuals is allowed to vary over time, introducing heteroskedasticity. In particular, we

assume the volatility to be stochastic and to occasionally take on extreme values, leading to

“outliers”. Indeed, we decompose the symmetric positive-definite matrix Σt as follows:

Σt = A−1OtΛtO
′
t

(
A−1

)′
(2)

where A−1 is a time-invariant lower triangular matrix with ones on its main diagonal,11 Λt is

a period-specific diagonal matrix of stochastic volatilities with diag(Λt) = (λ1,t, ..., λn,t)
′, and

Ot is a period-specific diagonal matrix of stochastic scale factors with diag(Ot) = (o1,t, ..., on,t)
′.

Hence the residuals in (1) can be rewritten as:

νt = A−1OtΛ
0.5
t ϵt ϵt ∼ N (0, In) (3)

where ϵt may be interpreted as Gaussian structural innovations. The reduced-form residuals

νt are thus Gaussian conditional on Λt and Ot. The model is completed by specifying laws of

motion for the unobserved states λj,t and oj,t. The vector of logs of the stochastic volatilities,

denoted as log λt, is modelled as a vector of random walks with uncorrelated errors:

log λt = log λt−1 + et et ∼ N (0,Φ) (4)

11The main implication of this assumption is that the contemporaneous effect of an innovation to the ith variable
on the jth variable is assumed to be constant over time. Indeed, Primiceri (2005) and Carriero et al. (2018) found
little variation in such coefficients. Specifying a time-varying At would require additional n(n−1)/2 state equations
to model the evolution of the non-zero off-diagonal entries of such matrix, resulting in a computationally heavier
estimation algorithm.
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where Φ is diagonal. The scale factors oj,t are mutually i.i.d. over all j and t, and follow a

mixture distribution that allows distinguishing between regular observations with oj,t = 1 and

outliers with oj,t ≥ 2. In particular, in any period t outliers in variable j occur with probability

pj and:

oj,t =


1 with probability 1− pj

U [2, 20] with probability pj

(5)

The BVAR is estimated using a Markov Chain Monte Carlo (MCMC) algorithm as in Car-

riero et al. (2019), Carriero et al. (2022a) and Carriero et al. (2022b), which consists in obtaining

draws from the joint posterior distribution by drawing from a sequence of posterior distributions

of blocks of parameters conditional on the data and on the remaining blocks.

Priors

The VAR slope coefficients follow a normal distribution and are shrunken towards a white

noise such that their unconditional mean is zero. We set a diffuse prior for the constant. The

prior for the below-diagonal elements of the correlation matrix A follows a normal distribu-

tion. The prior for the variances of the stochastic volatilities contained in the diagonal of Φ is

Inverse-Gamma and a normal prior is used for the initial value of log λt. Finally, Beta prior

is used for the outlier probabilities pj , set to imply a mean outlier frequency of once every 4 years.

Conditional forecasts and impulse response functions

Conditional forecasts are produced using a Kalman filter methodology, see e.g. Bańbura et al.

(2015). In fact, the variables for which we do not assume the knowledge of a future path can be

considered as time series with missing data. The Kalman filter allows to easily deal with such

time series. In particular, we cast the VAR in state-space form, and use a simulation smoother

(Durbin and Koopman, 2002) to draw from the posterior distribution of the conditional forecasts.

The same approach is used to deal with ragged edges in the data: first, we estimate the model

based on a ”balanced” data set (excluding the periods at the end of the sample for which not

all the variables are available), second we condition our forecasts on the ragged edge so as to

avoid discarding information.

The conditional forecast framework can be also used to obtain impulse response functions

(see Bańbura et al., 2015). In this paper we use a somewhat unconventional concept of IRF.
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Specifically, the impact of shocks in the international commodity prices on consumer prices

are computed as the percentage difference between two conditional forecasts, one in which the

commodity price is assumed to permanently increase by 10% relative to the last value in the

sample, and one in which the price is assumed to remain constant at its last observed value

throughout the forecast horizon.12

2.2 Detailed specifications

We construct and evaluate separate models for six HICP energy components: (i) car fuels,

(ii) liquid fuels, (iii) gas, (iv) electricity, (v) heat energy, and (vi) solid fuels.13 In a second

step, we aggregate the forecasts of individual subcomponents to construct predictions for HICP

energy, based on consumption basket weights.14 The need for a more detailed approach in

modelling and forecasting energy inflation goes beyond just improving accuracy. It also helps in

understanding the factors driving the different energy components and allows for the inclusion

of specific explanatory variables for each component. This need became obvious with the energy

crisis in the aftermath of the COVID-19 pandemic. Traditionally, energy shocks had been oil-

driven, so the main drivers of energy inflation have been car fuels, reflecting their large weight

(around 40%) in overall energy consumption. Figure 2 illustrates the role played by the various

components of energy inflation over time. Yet the post-pandemic period was atypical with

respect to the drivers of the energy inflation - electricity and gas contributed more than usual

and accounted for half of energy consumer price inflation at its peak of 44% in early 2022

(their weight in the energy consumption basket were 28% and 20% respectively, based on 2022

weights). Their large contribution reflected various factors. Gas price inflation already surged

since the summer of 2021, particularly in Europe, reflecting a combination of supply and demand

factors, amid increased uncertainty, including from escalating geopolitical tensions. Supply from

Norway was low in the first half of 2021 owing to maintenance work on pipelines, and since the

12By contrast, a “traditional” IRF for a recursive scheme can be obtained by a taking a difference between
a conditional forecast with appropriate constraints on the shocks on impact and an unconditional forecast, see
Bańbura et al. (2015) for details.

13This corresponds to disaggregation at four-digit COICOP. In the COICOP terminology the category “car
fuels” reads as “fuels and lubricants for personal transport equipment” but we will refer to it with the simplified
label. The details, including COICOP codes for each component, are provided in Appendix A. Note that in some
publications car fuels and liquid fuels are combined and labelled as “liquid fuels” and are officially defined by
Eurostat as “Liquid fuels and fuels and lubricants for personal transport equipment”. In this paper, liquid fuels
refer to the narrower category (0.7% of the HICP basket) which is included under housing costs (as an example
liquid fuels for domestic heating and lighting oils).

14The aggregation of the subcomponents to HICP energy is done via chain-linking Laspeyres-type indices.
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summer of 2021 supply of gas from Russia to the EU dropped significantly, contributing to

the slow replenishment of gas inventories in Europe ahead of the winter season. The Russian

invasion of Ukraine in early 2022 had a major aggravating effect. Peak electricity prices in 2022

were mainly driven by gas market developments but were intensified due to supply shortages of

other electricity sources, including low hydro power generation due to droughts, and low nuclear

generation in France due to maintenance. Heat energy and solid fuels play a negligible role

for the euro area aggregate (around 0.5% in total of the HICP basket in 2022) and they are

modelled only for the purpose of covering the entire energy basket.

Another advantage from implementing a more granular modelling strategy is the possibility

to better assess the impact of some measures in the Fit for 55 package, as they affect various

components in different ways. For example, EU Emissions Trading System 2 will be introduced

in 2027 and will affect transport fuels and building heating, see e.g. Box 2 in ECB (2024).

Figure 2: Contribution of subcomponents to annual energy inflation (percentage points).

Figure 3 and Table 1 provide an overview of the the explanatory variables, set-up of the

models and main features. More details are provided in the next subsections.
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Figure 3: Set-up of the energy inflation forecasting model

Variable Frequency Lags Regressors Seasonal Dummies

Car fuels, petrol W 24 Crude oil, refined petroleum N

Car fuels, diesel W 24 Crude oil, refined diesel N

Liquid fuels W 24 Crude oil, refined diesel N

Gas M 12 Natural gas N

Electricity M 12 Natural gas Y

Heat energy M 12 Natural gas, PPI energy N

Solid fuels M 12 Natural gas, PPI energy N

Table 1: Model specifications

Car fuels

For car fuels and liquid fuels high frequency weekly data is available from the European

Commission’s Weekly Oil Bulletin (WOB). In order to be able to use up-to-date information

with partial monthly data, the models for these two components are specified at a weekly

frequency (with 24 lags). Prices of crude oil, refined petroleum and diesel products are all

converted to euro. For car fuels WOB data are separately available for petrol and diesel prices,

therefore for this HICP energy component we actually construct two models. The weekly BVAR

for petrol prices contains WOB petrol, crude oil and refined petroleum prices. The BVAR for

diesel prices includes WOB diesel, crude oil and refined diesel prices. The inclusion of refined

petroleum and refined diesel prices helps capture developments at different stages of the pricing
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chain and implicitly obtain forecasts for refining and distribution margins.

Regarding the transformation of the variables, the BVARs include data based on pre-tax

prices (also available in the WOB) expressed in weekly absolute differences (as opposed to

weekly log differences). As shown in Meyler (2009) the link between consumer prices and oil

commodity prices is more stable in that case. In addition, the impact of known future changes

to taxes can be easily incorporated when data is expressed in pre-tax terms. Once a forecast

is obtained, taxes (i.e. excise and VAT) are “re-attributed” ex-post, assuming unchanged levels

over the forecast sample. In order to obtain the monthly forecasts for HICP car fuels, weekly

petrol and diesel price forecasts are converted to monthly frequency and aggregated based on

their weight.15 Figure 4 illustrates the importance of taxes and shows the contribution of pre-tax

prices and taxes (excise and VAT) for petrol and diesel in the panels (a) and (b).

Liquid fuels

Similarly to car fuels, forecasts for liquid fuels are obtained based on a weekly BVAR model

in order to make use of the higher frequency information on consumer prices included in the

European Commission’s WOB. The model includes the WOB gas oil series, crude oil and refined

diesel prices. Otherwise, the same model settings and variable transformations are applied as

described for car fuels. We present an overview of the contribution of taxes to WOB gas oil in

panel (c) of Figure 4.

Gas

For consumer gas inflation and the remaining HICP energy components the models are spec-

ified at monthly frequency (including 12 lags). Again, we include pre-tax consumer gas prices

obtained by combining HICP data with the Eurostat (bi-annual) data on gas price level and

relevant excise and VAT taxes. The details are provided in Appendix A.1. As for the previously

described components, the taxes are re-attributed ex-post to the forecasts using a random walk

assumption. Also in this case absolute differences and not log differences are applied to the in-

cluded variables. As explanatory variable, we consider natural gas wholesale prices (Netherlands

TTF Natural Gas Forward Day Ahead - Settlement price).

15HICP series for petrol and diesel and associated weights are only available as of December 2016, which does
not cover our full estimation sample, which starts in 1994. In order to evaluate the forecasts for the aggregate car
fuels component over the entire evaluation sample we use weights estimated via constrained OLS before December
2016.
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Electricity

Consumer electricity inflation is forecasted based on a monthly BVAR (12 lags) and includes

absolute differences of pre-tax electricity prices and of natural gas wholesale prices. Pre-tax

prices are obtained using the Eurostat data as in the case of gas prices. Given that electricity

prices tend to be adjusted in specific months (most notably in January) in some countries, sea-

sonal dummies are included as well.

Heat energy

The BVAR is monthly (12 lags) and includes HICP heat energy, natural gas wholesale prices

and PPI energy, all expressed in absolute differences.

Solid fuels

The BVAR is monthly (12 lags) and includes HICP solid fuels, natural gas wholesale prices

and PPI energy, all expressed in absolute differences.

2.3 Benchmarks

Apart from the short-term inflation projections provided by National Central Banks once per

quarter in the Eurosystem staff inflation projections exercise (see ECB (2016)) we compare

the models to a univariate Bayesian AR model for HICP energy (in log differences) and a bi-

variate BVAR including crude oil prices and HICP energy (both variables in log differences).

These benchmarks differ in terms of choice of variables and transformations but have the same

econometric features.
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(a) Petrol

(b) Diesel

(c) Gas

Figure 4: Contributions of excise taxes and VAT to Weekly Oil Bulletin Petrol, Diesel, and Gas
prices.
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3 Real-time forecast evaluation

3.1 Real-time data

We construct real-time vintages for all the series included in the model, i.e. covering commodity

prices, producer prices, EUR/USD exchange rate, WOB series, and the components of HICP

energy. To that end we use the vintages stored in the ECB macroeconomic projections database

and the Statistical Data Warehouse (SDW). For the bi-annual data on gas price levels and

applicable taxes, real-time vintages are not available and we create pseudo real-time vintages.

Wherever applicable the data refers to the changing composition of the euro area. For some

series backdating is applied to obtain a longer history. Detailed explanations are provided in

Table A1 in the Appendix.

3.2 Design of the evaluation

The models are used to produce forecasts with real-time data vintages. The forecasts are pro-

duced once per quarter and the cut-off dates correspond to those in the Eurosystem/ECB staff

macroeconomic projections (henceforth (B)MPE, which stands for (Broad) Macroeconomic Pro-

jection Exercise). This allows for a fair comparison with the monthly HICP forecast embedded

in these projections.

The evaluation sample starts with the (cut-off date of) March 2014 MPE and goes to June

2023 BMPE (38 vintages). The cut-off dates are usually in the second half of the second month

of each quarter (see Table A2 in the Appendix). We evaluate the forecasts for one-, three-, six-,

nine- and eleven-month ahead horizon. The latter is the longest horizon that is available for the

monthly Eurosystem staff inflation projections for the entire evaluation sample.

Model forecasts are evaluated in terms of out-of-sample forecast accuracy and in-sample fit.

As measure of accuracy we consider the root mean squared forecast error (RMSFE). To analyse

how relative accuracy evolves over time we also look at the RMSFE on a rolling basis of eight

quarters. We also check the stability of the forecasts, i.e. forecasts produced by the models

should be well-behaved and not exhibit explosive behaviour (an issue particularly relevant in

case of large spikes in energy commodity prices).16

We produce and evaluate the following forecasts, reflecting different assumptions about paths

for crude oil and wholesale gas prices:

16To this end we reject parameter draws that result in non-stationary models.
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1. Unconditional forecasts: we include no additional information after the cut-off date to

produce forecasts. Hence, no assumptions on future evolution of any variable are included.

2. Forecast conditional on (B)MPE assumptions: the forecasts are conditional on the assumed

future paths for crude oil and natural gas prices (in euro) entailed in the (B)MPEs.17 The

Eurosystem staff inflation projections for energy are produced under such conditioning

assumptions and thus the STIP conditional forecasts are comparable with the Eurosystem

staff inflation projections.18

3. Forecasts conditional on “perfect assumptions”: the conditioning variables are the same

as above, however actual rather then real-time data is used. In other words the forecasts

are obtained conditional on the knowledge of future paths of crude oil and wholesale gas

prices. This is a highly counterfactual rather than real-time scenario, however it helps to

assess how well the model can replicate the developments in consumer prices given the

paths of commodity prices (or how well the model fits the consumer price data).

Whereas the models are fitted to monthly changes or monthly percentage changes, all the

results are reported for monthly year-on-year inflation rates: π12
t = 100× Pt−Pt−12

Pt−12
, where Pt is

the appropriate HICP index.

4 Results

Figure 5 shows the real-time forecast paths for HICP energy inflation spanning the period 2014

- 2023 for the 38 vintages and the three types of assumptions on oil and gas described above.

There is no systematic bias in forecasting energy inflation, except for the period of the big

inflation surge in the post-pandemic environment, when the model under-predicts irrespective

of whether one looks at conditional or unconditional forecasts. When forecasts are conditioned

on the actual path of the commodity prices (panel (c)) the degree of under-prediction is lower,

but there are still some upward dynamics which are missed. One likely explanation for this

is that the pass-through of energy commodity shocks has been larger in this period of high

inflation and abnormal events, as shown for instance by De Santis and Tornese (2023). Overall,

the exercise of conditioning on the actual path of the explanatory variables shows that the model

17Other explanatory variables such as prices of refined products or producer prices are unrestricted.
18In each projection round these conditioning paths are produced based on the latest developments in prices of

futures contracts for crude oil and wholesale gas (see ECB, 2016, for details).
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tracks energy inflation quite well and this is valid also for the very last part of the sample when

the inflation rates are “normalising”.

(a) Real-time unconditional forecasts
(b) Real-time forecasts conditional on (B)MPE as-
sumptions

(c) Counterfactual forecasts conditional on perfect
assumptions

Figure 5: HICP energy real-time and counterfactual forecasts

The lessons derived for the aggregate HICP energy inflation also hold across components.

Before the invasion of Ukraine unconditional and conditional forecasts track actual data for

sub-components reasonably well, but under-predict notably during the post-pandemic inflation

surge (Figures 6 - 8). When conditioning on the realised values of the commodity prices, the

counterfactual forecasts do a better job in tracking actual inflation compared to unconditional

forecasts or those using (B)MPE assumptions, as expected (Figure 8). The fit is almost perfect

in the case of car fuels, and it worsens for gas, solid fuels and electricity after the pandemic.

Especially for the latter two the model fit is quite poor in the recent period. Country specific
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factors (such as heterogeneities in price-setting, price composition, retail contract types, elec-

tricity mix, taxes, rebates, administered prices, etc.) are likely to play a larger role for electricity

and gas prices compared to other components of HICP energy. All in all, forecast errors seem

to be to a large extent the result of uncertainty related to commodity price developments, with

larger role for other factors in the current high inflation period.

Stochastic volatility and outlier correction render the forecasts overall well-behaved even in

this abnormal episode, when lack of such features would yield explosive forecast paths (Lenza

and Primiceri, 2020). A strong mean reversion is a feature of all these forecasts, irrespective of

whether one conditions or not on the (B)MPE assumptions.
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(a) Car fuels (b) Liquid fuels

(c) Gas (d) Electricity

(e) Heat energy (f) Solid fuels

Figure 6: Real-time unconditional forecasts
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(a) Car fuels (b) Liquid fuels

(c) Gas (d) Electricity

(e) Heat energy (f) Solid fuels

Figure 7: Real-time forecasts conditional on (B)MPE assumptions
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(a) Car fuels (b) Liquid fuels

(c) Gas (d) Electricity

(e) Heat energy (f) Solid fuels

Figure 8: Counterfactual forecasts conditional on perfect assumptions

Table 2 shows RMSFEs for the full evaluation sample for five (short-term) forecast horizons

(1, 3, 6, 9 and 11 months ahead in line with the monthly Eurosystem staff inflation projections
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forecast horizon). Over the full sample, the newly proposed STIP models outperform the Eu-

rosystem staff inflation projections for almost all forecast horizons, with the only exception of

the one-month ahead horizon.

Bringing in information from the (B)MPE assumptions for oil and gas prices (see STIP

Conditional) helps only for the very short term (up to three months ahead), while further ahead

the unconditional STIP is better than the conditional one. This result holds across components,

where one can see that by and large conditioning on (B)MPE assumptions does not help apart

from the very short term. Hence, the model itself “extrapolates” better at longer horizons than

when aided with (B)MPE assumptions.

The proposed STIP model outperforms the simple BVAR specification with aggregate energy

inflation, highlighting the advantage of going more granular when forecasting energy.

The counterfactual exercise where we condition on the actual outcomes of crude oil and

wholesale gas prices (labeled as STIP perfect) yields a sizeably lower RMSFE. This is not

relevant in real-time but tells us something about the fit of the model. For example, the forecast

performance of the STIP is much better than of the simple BVAR with energy inflation and oil

price growth, suggesting that also in-sample a disaggregated model has a much better fit.19

The lower RMSFE of the STIP compared to the Eurosystem staff inflation projections can be

attributed to its better performance after the pandemic. On a pre-COVID sample (see Table B1

in the Appendix) while the STIP models beat the simple bi-variate BVAR including oil prices,

they are worse than the Eurosystem staff inflation projections, but only slightly. This means that

the STIP models are already a good benchmark in normal times, if we consider the information

advantage of the official projections in terms of announced changes in regulated prices and taxes.

In addition to this, STIP models have the advantage of improving the performance compared

to the Eurosystem staff inflation projections in periods of exceptional volatility.

19A similar BVAR which includes also gas price (assumptions) would slightly improve the forecasts over the
full sample compared with the BVAR with only oil and HICP energy, except for one-month ahead horizon. In
the pre-COVID sample the forecasts of the BVAR with three variables would be, however, slightly worse. In any
case, the performance of the three-variable BVAR would be overall worse compared to the proposed suite.
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h = 1 h = 3 h = 6 h = 9 h = 11

HICP Energy

Eurosystem staff inflation projections 0.28 4.06 7.90 11.03 13.20

STIP Unconditional 0.77 4.05 7.17 10.28 12.42

BVAR (oil) Unconditional 1.38 5.25 8.45 11.18 13.42

BAR Unconditional 1.62 5.41 8.63 11.26 13.54

STIP Conditional 0.67 3.65 7.33 10.65 12.84

BVAR (oil) Conditional 1.01 4.60 7.67 10.40 12.76

STIP Perfect assumptions 0.66 2.87 4.34 5.59 6.45

BVAR (oil) Perfect assumptions 1.20 4.12 5.47 7.06 8.76

Car fuels

STIP Unconditional 0.43 4.34 7.60 10.17 12.30

STIP Conditional 0.40 4.08 7.98 10.44 12.53

STIP Perfect assumptions 0.40 2.35 3.15 3.36 4.18

Liquid fuels

STIP Unconditional 1.33 9.74 16.82 23.39 27.44

STIP Conditional 1.14 8.77 17.38 24.22 28.34

STIP Perfect assumptions 1.18 6.60 9.41 11.32 13.06

Gas

STIP Unconditional 1.71 6.00 11.07 15.56 16.55

STIP Conditional 1.58 5.30 11.55 16.06 17.23

STIP Perfect assumptions 1.53 5.44 8.03 10.38 10.22

Electricity

STIP Unconditional 1.65 4.53 7.39 9.70 11.31

STIP Conditional 1.58 4.38 7.44 9.87 11.52

STIP Perfect assumptions 1.55 4.60 6.91 8.59 9.70
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Heat energy

STIP Unconditional 1.51 2.89 5.74 8.03 9.46

STIP Conditional 1.46 3.21 6.74 9.17 11.18

STIP Perfect assumptions 1.43 3.08 4.07 5.26 8.13

Solid fuels

STIP Unconditional 1.97 5.65 10.40 13.88 15.21

STIP Conditional 1.95 5.39 10.29 13.95 15.40

STIP Perfect assumptions 1.94 5.37 9.94 13.05 14.43

Table 2: RMSFE. Notes: root mean squared forecast errors (RMSFEs) are computed for monthly
annual growth rates of HICP energy and components. The model forecasts are computed with
real-time data at projection cut-off dates: i) unconditional ii) conditional on (B)MPE assump-
tions iii) conditional on realized oil and wholesale assumptions (perfect assumptions). Evalu-
ation sample includes March 2014 (B)MPE to June 2023 (B)MPE. The latest outcome in the
evaluation is June 2023.

In terms of time variation in the forecasting performance (see Figures 9-11 showing the

RMSFE calculated over a rolling window of 8 exercises) all models have deteriorated in terms

of accuracy at the onset of the pandemic, also under perfect assumptions. The Eurosystem

staff inflation projections cannot be beaten for the one-month ahead horizon, but it is worth

mentioning that in many cases the HICP flash release for certain countries is available before

the euro area aggregate data is released. Beyond the shortest horizon, the figures show a clear

deterioration of the Eurosystem staff inflation projections performance relative to the model in

the recent period, while before 2022 the official projection was performing slightly better than

the STIP in most cases.
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(a) h = 1 (b) h = 3

(c) h = 6 (d) h = 9

(e) h = 11

Figure 9: Rolling RMSFE: Unconditional model forecasts compared to the Eurosystem staff
inflation projections.
Notes: the rolling window includes 8 projection rounds.
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(a) h = 1 (b) h = 3

(c) h = 6 (d) h = 9

(e) h = 11

Figure 10: Rolling RMSFE: Model forecasts conditional on (B)MPE assumptions compared to
the Eurosystem staff inflation projections.
Notes: the rolling window includes 8 projection rounds.
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(a) h = 1 (b) h = 3

(c) h = 6 (d) h = 9

(e) h = 11

Figure 11: Rolling RMSFE: Model forecasts conditional on perfect assumptions.
Notes: the rolling window includes 8 projection rounds.

Figure 12 depicts a decomposition of one-quarter ahead forecast errors into a component
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due to errors in the conditioning ((B)MPE) assumptions on wholesale commodity prices and a

residual component. Errors in the assumptions explain most of the forecast errors in the first

part of the evaluation sample until the recent inflation surge, when exceptionally large swings

in commodity prices have likely altered the pass-through of the respective shocks to consumer

prices, causing misspecification issues.

Figure 12: Decomposition of one-quarter ahead forecast errors

Finally, Appendix B reports robustness checks to some of the specification choices. In par-

ticular, Tables B2-B3 show the results when error correction terms (the margins) are included

in the BVARs for car fuels, liquid fuels and gas.20 Including those additional terms does not

lead to improvements in forecast accuracy over the full sample, and to marginal improvements

in the pre-Covid sub-sample. Therefore we opt for the simpler specification. Tables B4-B5 show

the results when after-tax data are used (as opposed to pre-tax in the baseline specification).

They indicate that using pre-tax data overall improved the accuracy in the pre-Covid sample,

while slightly deteriorating over the full sample. Considering the limited difference between

20More precisely, in the models for WOB data we include the difference between the consumer price and the
price of refined product (the “distribution margin”) and the difference between the price of refined product and
the price of crude oil (the “refining margin”). In the model for gas we include the difference between the consumer
price and the wholesale price. Similar error correction terms have been considered in e.g. Meyler (2009), Cornille
and Meyler (2010) or Knotek and Zaman (2017).
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tax-corrected and tax-uncorrected and the importance for scenario analysis of modelling tax

changes, we prefer to maintain the tax correction in the main specification. Finally, table B6

compares the performance of a monthly version21 of our model to a medium-scale monthly

BVAR that jointly includes all the components of HICP energy (car fuels, liquid fuels, gas, elec-

tricity, heating energy, and solid fuels) and the two wholesale commodity prices (crude oil and

natural gas)22. Over the full sample, the medium-scale BVAR’s performance is inferior to that

of STIP across all forecasting modalities. Interestingly, the deterioration in relative performance

is particularly severe when conditioning on realized values of the two energy commodities, which

provides evidence in favour of disaggregated modelling for better capturing commodities’ pass-

through dynamics. The result is mainly driven by the fuels components over the high inflation

period. Specifically, the strong correlation between oil and gas prices in the years preceding

the inflationary episode of 2021-2022 leads to too high forecasts for fuels when gas prices are

included in the (joint) model, indicating some identification issues in the latter. When limiting

the comparison to the pre-pandemic period (Table B7) differences in performance are less pro-

nounced.

5 Sensitivity of energy inflation to energy commodity prices

A strong feature of the chosen model setup is the opportunity to analyse the sensitivity of the

different energy sub-components to wholesale energy price changes. To do so, we conduct an

analysis of the responses given by the models to changes in the oil and natural gas prices. The

exercises are designed so that the responses can be benchmarked against the Eurosystem Basic

Model Elasticities (BMEs, see paragraph 3.4 in ECB, 2016). BMEs provide a mechanical “rule

of thumb” assessment of the impact on the economy from changes in various variables, including

commodity prices, rather than from structural shocks.23

Figure 13 shows the estimated responses of HICP energy to a 10% permanent increase in

either crude oil prices (panel (a)) or wholesale natural gas prices (panel (b)) estimated over all

the data vintages.24 While the pass-through of a change in oil price is quick (see also Meyler,

21Car and liquid fuels are modelled at monthly frequency, using monthly crude oil as explanatory variable.
22The treatment of taxes is aligned across the two models – transport and liquid fuels are tax-corrected directly

at monthly frequency, following a procedure similar to that used for HICP gas and HICP electricity.
23The BMEs are used e.g. to assess the sources of inflation forecast errors by Chahad et al. (2022, 2023).
24As explained in Section 2.1, we evaluate the sensitivity to commodity prices by looking at the difference
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2009), a wholesale gas price change takes roughly a year to be fully absorbed. Although more

clear for crude oil than for wholesale gas, the elasticities are level dependent with respect to

price levels of both commodities. For the case of natural gas the level dependence seems to be

more relevant after 2021, most likely associated to high swings in the price level. The result of

level-dependent elasticities in this linear model is a consequence of the fact that the variables

enter as absolute rather than as percentage changes and in pre-tax terms. The refining and

distribution margins tend to be broadly stable and do not depend on the level of the input

price. In addition, there is typically a large share of per unit (litre) excise duty in the price of

fuels (similarly for gas). These two factors imply that a certain percentage change in the euro

price of oil triggers a lower percentage change in consumer energy prices when oil prices are low

compared with when they are at high levels. This is because the above mentioned margins and

excise taxes have a larger share in the consumer price in the former case and thus dampen the

impact of changes in input prices to a larger extent (see also Meyler, 2009, for a discussion on

this point).

(a) Oil (b) Natural gas

Figure 13: HICP energy response to 10% permanent shocks, based on the STIP models

Note: The blue lines (left-side axis) represent the (median) responses of HICP energy to a permanent 10% increase
in oil (panel (a)) and natural gas (panel (b)) price. The yellow lines (right-side axis) show the evolution of the
corresponding commodity prices. The responses associated to oil shocks are aggregated using the responses of car
fuels and liquid fuels, while the responses associated to natural gas shocks are constructed from gas, electricity,
heat energy and solid fuels.

To contrast the previous results, we also construct the responses of HICP energy to oil shocks

between two conditional forecasts, one in which the commodity price is assumed to permanently increase by 10%
and one in which the price is assumed to remain constant at its last observed value throughout the forecast
horizon.
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based on the bi-variate BVAR model (see panel (a) in Figure 14). The responses based on this

model do not capture the level dependencies evidenced in Figure 13. This result highlights the

merits of modelling HICP energy on a more granular basis and with less “standard” transforma-

tions. To better compare this and our specification, we combine our model responses of HICP

energy to shocks in both commodity markets in panel (b) of Figure 14. While the average re-

sponses to a “synthetic” energy shock for our model are similar to those for the simpler model,

we can see clear differences across different levels of commodity prices for the former.

(a) Impulse responses to shock in oil price,
produced by BVAR with HICP energy
and crude oil in log-differences.

(b) Impulse responses to shocks to oil and gas
prices, produced by the STIP.

Figure 14: HICP energy response to 10% permanent shocks: BVAR vs STIP

Note: The blue lines represent the (median) responses of HICP energy to shocks in oil (panel (a)) and in oil and
natural gas (panel (b)) markets. The yellow lines show the evolution of the corresponding commodity prices. In
the right-hand panel we assume 10% increase for both oil and gas prices and we aggregate the responses of car
and liquid fuels to the former and of the remaining HICP energy components to the latter.

Taking a granular approach, we also show the individual responses of oil-sensitive (car and

liquid fuels) and gas-sensitive (gas, electricity, heat energy and solid fuels) items to both com-

modity shocks in Figure 15 and Figure 16, respectively. Liquid fuels react more strongly to oil

prices than car fuels, due likely to a difference in weight of taxes and refining and distribution

margins between the two components. A 10% shock to wholesale gas prices affects mainly heat

energy and gas, while the impact on electricity and solid fuels is limited and was almost null

before 2022.
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(a) Car fuels (b) Liquid fuels

Figure 15: Permanent 10% oil commodity shock

(a) Gas (b) Electricity

(c) Heat energy (d) Solid fuels

Figure 16: Permanent 10% gas commodity shock
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6 Concluding remarks

The paper proposes a framework for forecasting energy inflation by modelling various energy

components individually. It consists of Bayesian Vector Autoregressions (BVARs) that can

handle various features of the data, in particular its extreme volatility in post-COVID times,

seasonal patterns and ragged edges related to differences in publication delays. It incorporates

a wide range of drivers of consumer energy prices, including crude and refined oil prices, natural

gas prices and producer prices of energy. A real-time forecast evaluation ascertains that it

is beneficial to model individual energy components separately, as the bottom-up approach is

superior to a top-down simpler benchmark, namely a bi-variate BVAR containing aggregate

energy inflation and oil prices. In sample, the model fits the data quite well, with the exception

of the post-pandemic surge episode and with the notable exception of electricity, which appears

harder to model. All in all, forecast errors seem to be the result not of the poor underlying model,

but of the inability of forecasting the key explanatory variables, namely wholesale commodity

prices as observed on the international or European markets.

This modelling framework can be also used to shed light on the transmission of energy

commodity price shocks in different markets to consumer energy prices. We produce impulse

response functions at different levels of oil and natural gas prices. We show that responses to

oil price shocks are immediate and strong, while responses to wholesale natural gas price shocks

tend to be more delayed. In both cases, the strength of the responses varies with the level of

the underlying energy commodity prices, with the pass-through being stronger when the level

of commodity price is higher.

The proposed model could be applied at the country level, to better reflect and understand

differences in the price setting mechanisms between the countries, in particular for the most

“difficult” components like electricity and gas. The structural transformation in energy markets

due to carbon prices, biofuels, de-coupling of electricity prices from gas in the long run (due for

example to renewable energy sources) can be also reflected and analysed in the model.

In general, the structural change and the resulting time variation in forecast performance

highlights the need to continuously adapt the available battery of models.
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Appendix A Data availability and construction

Table A1: Data description and availability

WOB Petroleum CPR WTAX Consumer price, all taxes and du-

ties included, per thousand litres,

Euro Super 95, automotive motor

fuel (light distillate), euro

EC W 12-01-1998 - present

WOB Petroleum CPR NTAX Consumer price, taxes and duties

not included, per thousand litres,

Euro Super 95, automotive motor

fuel (light distillate), euro

EC W 03-01-1994 - present

WOB Petroleum IDT Indirect taxes, per thousand litres,

Euro Super 95, automotive motor

fuel (light distillate), euro

EC W 03-01-1994 - present

WOB Petroleum VAT Value added tax, per thousand litres,

Euro Super 95, automotive motor

fuel (light distillate), percentage

EC W 03-01-1994 - present

WOB Diesel CPR WTAX Consumer price, all taxes and duties

included, per thousand litres, Diesel,

automotive gas oil, euro

EC W 12-01-1998 - present

WOB Diesel CPR NTAX Consumer price, taxes and duties not

included, per thousand litres, Diesel,

automotive gas oil, euro

EC W 03-01-1994 - present

WOB Diesel IDT Indirect taxes, per thousand litres,

Diesel, automotive gas oil, euro

EC W 03-01-1994 - present

WOB Diesel VAT Value added tax, per thousand litres,

Diesel, automotive gas oil, percent-

age

EC W 03-01-1994 - present

WOB Gas CPR WTAX Consumer price, all taxes and duties

included, per thousand litres, heating

gas oil, euro

EC W 11-01-1999 - present

WOB Gas CPR NTAX Consumer price, taxes and duties not

included, per thousand litres, heating

gas oil, euro

EC W 03-01-1994 - present

WOB Gas IDT Indirect taxes, per thousand litres,

heating gas oil, euro

EC W 03-01-1994 - present

WOB Gas VAT Value added tax, per thousand litres,

heating gas oil, percentage

EC W 03-01-1994 - present

Variable Description Source Freq. Span

Continued on next page
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Table A1: Data description and availability (Continued)

HICP Car Fuels harmonised index of consumer prices,

fuels and lubricants for personal

transport equipment, CP0722

Eurostat M 01-1995 - present

HICP Liquid Fuels harmonised index of consumer prices,

liquid fuels, CP0453

Eurostat M 01-1995 - present

HICP Gas harmonised index of consumer prices,

gas, CP0452

Eurostat M 01-1995 - present

HICP Electricity harmonised index of consumer prices,

electricity, CP0451

Eurostat M 01-1995 - present

HICP Heat Energy harmonised index of consumer prices,

heat energy, CP0455

Eurostat M 01-1995 - present

HICP Solid Fuels harmonised index of consumer prices,

solid fuels, CP0454

Eurostat M 01-1995 - present

Natural Gas Price WTAX Gas prices for domestic consumers,

all taxes included, euro

Eurostat B 1991S1 - 2022S2

Natural Gas Price NTAX Gas prices for domestic consumers,

no taxes included, euro

Eurostat B 1991S1 - 2022S2

Natural Gas Price VAT Gas prices for domestic consumers,

value added taxes, percentage

Eurostat B 1991S1 - 2022S2

Natural Gas Price EXC Gas prices for domestic consumers,

excise tax, euro

Eurostat B 1991S1 - 2022S2

Electricity Price WTAX Electricity prices for domestic con-

sumers, all taxes included, euro

Eurostat B 1991S1 - 2022S2

Electricity Price NTAX Electricity prices for domestic con-

sumers, no taxes included, euro

Eurostat B 1991S1 - 2022S2

Electricity Price VAT Electricity prices for domestic con-

sumers, value added taxes, percent-

age

Eurostat B 1991S1 - 2022S2

Electricity Price EXC Electricity prices for domestic con-

sumers, excise tax, euro

Eurostat B 1991S1 - 2022S2

Oil European Dated Brent Forties Ose-

berg Ekofisk (BFOE) Crude Oil Spot

Price, Historical close

Bloomberg D 16-05-1983 - present

Refined Petroleum NWE Eurobob Oxy Barge Balance of

the Month, Historical close

Bloomberg D 02-06-1986 - present

Variable Description Source Freq. Span

Continued on next page

ECB Working Paper Series No 3062 44



Table A1: Data description and availability (Continued)

Refined Diesel Gas oil 0.1% Sulphur Antwerp-

Rotterdam-Amsterdam - Unit 7.44

bbl/tonne, Historical close

Refinitiv D 30-03-1987 - present

Gas Spot (backcasted with

border gas)

Netherlands TTF Natural Gas For-

ward Day Ahead - Historical close,

average of observations through pe-

riod

Refinitiv M 02-2006 - present

Border Gas European Border Gas Prices, Aver-

age (e/MMBtu)

Energy Intelli-

gence

M 01-1990 - present

Gas Futures ICE Endex TTF Natural Gas

Monthly Futures Chain, Historical

close

Reuters D 31-08-2016 - present

PPI Energy Producer Price Index, domestic sales,

MIG Energy, NACE Rev2

Eurostat M 01-1985 - present (avail-

able from I6)

FX Euro-dollar US DOLLARS/1 EUR, SPOT AT

2:15 PM (CET)D & W,M,Q,A-AVG

BIS D 28-06-1975 - present

Notes: EC: European Commission, BIS: Bank for International Settlements, CP: Classification of individual consumption

by purpose (COICOP) four-digit categories. D: daily, W: weekly, M: monthly, B: bi-annual.

Variable Description Source Freq. Span

A.1 Pre-tax consumer gas and electricity prices

In order to obtain monthly consumer pre-tax gas (electricity) prices we combine (after-tax)

HICP gas (electricity) with bi-annual data on consumer gas (electricity) prices and applicable

excise and VAT taxes. In order to do so we transform bi-annual data to monthly frequency

assuming they remain constant over the periods of 6 months. Then we rescale HICP to match

the after-tax bi-annual data. Finally we remove VAT and excise takes. Specifically, pre-tax gas

price series is obtained from the following formula:

GASpre−tax
t =

GASHICP
t × γ̂

1 + V ATBI
t

− EXCBI
t

where

- GASpre−tax
t is the pre-tax gas price level at time t (to be included in the model).

- GASHICP
t is HICP gas at time t, with mean µHICP and standard deviation σHICP .

- γ̂ is a scaling factor estimated via OLS regressing the bi-annual gas price including all

ECB Working Paper Series No 3062 45



taxes and levies on HICP gas in real-time.

- V ATt is the value added tax on consumer gas.

- EXCt is the excise tax on consumer gas.25

Analagous operations are applied in order to obtain pre-tax prices for electricity.

25Where the database displays clear errors, i.e. negative or very large excise numbers, we reconstruct these
entries by using the three remaining Eurostat series: EXCt = GASWTX

t / (1 + V ATt)−GASNTAX
t . The same is

applied for WOB data in case of large discrepancies.
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A.2 Cut-off dates for real-time vintages

Table A2: (B)MPE cut-off dates

March 2014 2014-02-20 2014-02-12

June 2014 2014-05-21 2014-05-14

September 2014 2014-08-21 2014-08-13

December 2014 2014-11-20 2014-11-13

March 2015 2015-02-20 2015-02-11

June 2015 2015-05-20 2015-05-12

September 2015 2015-08-21 2015-08-12

December 2015 2015-11-19 2015-11-12

March 2016 2016-02-25 2016-02-15

June 2016 2016-05-18 2016-05-10

September 2016 2016-08-18 2016-08-11

December 2016 2016-11-24 2016-11-17

March 2017 2017-02-20 2017-02-14

June 2017 2017-05-23 2017-05-16

September 2017 2017-08-21 2017-08-14

December 2017 2017-11-30 2017-11-22

March 2018 2018-02-19 2018-02-13

June 2018 2018-05-31 2018-05-22

September 2018 2018-08-29 2018-08-21

December 2018 2018-11-28 2018-11-21

March 2019 2019-02-21 2019-02-12

June 2019 2019-05-22 2019-05-15

September 2019 2019-08-29 2019-08-19

December 2019 2019-11-27 2019-11-19

March 2020 2020-02-24 2020-02-18

June 2020 2020-05-25 2020-05-18

September 2020 2020-08-27 2020-08-18

December 2020 2020-11-25 2020-11-18

March 2021 2021-02-24 2021-02-16

Vintage Latest Information Assumptions

Continued on next page
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Table A2: (B)MPE cut-off dates (Continued)

June 2021 2021-05-26 2021-05-18

September 2021 2021-08-26 2021-08-16

December 2021 2021-12-01 2021-11-25

March 2022 2022-03-02 2022-02-28

June 2022 2022-05-24 2022-05-17

September 2022 2022-08-25 2022-08-22

December 2022 2022-11-30 2022-11-23

March 2023 2023-03-01 2023-02-15

June 2023 2023-05-31 2023-05-23

Vintage Latest Information Assumptions
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Appendix B Robustness

B.1 Sub-sample analysis: pre-covid sample

h = 1 h = 3 h = 6 h = 9 h = 11

HICP Energy

Eurosystem staff inflation projections 0.13 2.24 4.01 4.79 5.19

STIP Unconditional 0.24 2.53 4.23 5.31 5.82

BVAR (oil) Unconditional 0.97 3.09 5.06 6.44 7.07

BAR Unconditional 1.03 3.07 4.91 6.05 6.50

STIP Conditional 0.20 2.30 4.29 5.32 5.69

BVAR (oil) Conditional 0.52 2.41 4.37 5.35 5.51

STIP Perfect assumptions 0.21 0.69 1.31 1.69 2.03

BVAR (oil) Perfect assumptions 0.60 1.17 2.21 2.39 1.76

Car fuels

STIP Unconditional 0.41 4.19 7.04 8.35 8.73

STIP Conditional 0.36 3.81 7.12 8.17 8.19

STIP Perfect assumptions 0.33 1.14 2.25 2.22 2.53

Liquid fuels

STIP Unconditional 1.04 7.56 12.02 15.93 17.39

STIP Conditional 0.84 6.62 11.90 15.64 16.41

STIP Perfect assumptions 0.91 2.25 4.99 4.91 5.44

Gas

STIP Unconditional 0.79 1.91 3.13 4.02 4.20

STIP Conditional 0.79 1.76 2.91 3.96 4.24

STIP Perfect assumptions 0.77 1.62 2.49 3.01 3.23

Electricity

STIP Unconditional 0.65 1.04 1.52 1.67 1.49
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STIP Conditional 0.65 1.03 1.52 1.70 1.49

STIP Perfect assumptions 0.67 1.03 1.46 1.63 1.37

Heat energy

STIP Unconditional 1.44 2.58 3.91 5.26 5.13

STIP Conditional 1.43 2.42 3.53 4.91 5.39

STIP Perfect assumptions 1.42 2.49 3.69 4.82 5.09

Solid fuels

STIP Unconditional 0.32 0.60 0.95 1.34 1.65

STIP Conditional 0.31 0.59 0.95 1.39 1.70

STIP Perfect assumptions 0.27 0.56 0.85 1.20 1.51

Table B1: RMSFE - Pre-Covid sub-sample
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B.2 Error-corrected weekly models

Main specification Error-correction

h = 1 h = 3 h = 6 h = 9 h = 11 h = 1 h = 3 h = 6 h = 9 h = 11

Car fuels

Unconditional 0.43 4.34 7.60 10.17 12.30 0.39 4.42 8.18 10.98 14.01

Conditional 0.40 4.08 7.98 10.44 12.53 0.38 4.10 8.39 11.04 13.57

Perfect assumptions 0.40 2.35 3.15 3.36 4.18 0.39 3.03 5.10 6.10 6.82

Liquid fuels

Unconditional 1.33 9.74 16.82 23.39 27.44 1.35 10.21 17.09 23.07 27.81

Conditional 1.14 8.77 17.38 24.22 28.34 1.17 9.53 18.36 25.07 29.59

Perfect assumptions 1.18 6.60 9.41 11.32 13.06 1.24 8.35 12.16 13.67 14.69

Gas

Unconditional 1.71 6.00 11.07 15.56 16.55 1.77 6.06 11.05 15.46 16.44

Conditional 1.58 5.30 11.55 16.06 17.23 1.65 5.35 11.53 15.97 17.14

Perfect assumptions 1.53 5.44 8.03 10.38 10.22 1.60 5.50 8.01 10.19 9.92

Table B2: RMSFE - Main specification vs. error-correction, full sample

Main specification Error-correction

h = 1 h = 3 h = 6 h = 9 h = 11 h = 1 h = 3 h = 6 h = 9 h = 11

Car fuels

Unconditional 0.41 4.19 7.04 8.35 8.73 0.36 3.98 7.11 8.05 9.25

Conditional 0.36 3.81 7.12 8.17 8.19 0.34 3.65 6.98 7.63 8.11

Perfect assumptions 0.33 1.14 2.25 2.22 2.53 0.33 1.64 3.90 4.59 4.88

Liquid fuels

Unconditional 1.04 7.56 12.02 15.93 17.39 1.03 7.29 11.35 14.56 16.88

Conditional 0.84 6.62 11.90 15.64 16.41 0.87 6.57 11.55 14.46 15.73

Perfect assumptions 0.91 2.25 4.99 4.91 5.44 0.94 2.24 5.36 5.91 6.72
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Gas

Unconditional 0.79 1.91 3.13 4.02 4.20 0.78 1.90 3.10 3.98 4.16

Conditional 0.79 1.76 2.91 3.96 4.24 0.78 1.75 2.83 3.78 4.03

Perfect assumptions 0.77 1.62 2.49 3.01 3.23 0.77 1.63 2.45 2.84 3.05

Table B3: RMSFE - Main specification vs. error-correction, Pre-Covid sub-sample
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B.3 Tax-corrected vs. tax-uncorrected

Main specification Tax-uncorrected

h = 1 h = 3 h = 6 h = 9 h = 11 h = 1 h = 3 h = 6 h = 9 h = 11

HICP Energy

Unconditional 0.77 4.05 7.17 10.28 12.42 0.71 3.97 6.99 10.11 12.26

Conditional 0.67 3.65 7.33 10.65 12.84 0.65 3.58 7.17 10.48 12.67

Perfect assumptions 0.66 2.87 4.34 5.59 6.45 0.64 2.73 3.99 5.11 6.02

Car fuels

Unconditional 0.43 4.34 7.60 10.17 12.30 0.42 4.33 7.61 10.20 12.28

Conditional 0.40 4.08 7.98 10.44 12.53 0.39 4.06 7.96 10.43 12.44

Perfect assumptions 0.40 2.35 3.15 3.36 4.18 0.39 2.31 3.04 3.18 4.00

Liquid fuels

Unconditional 1.33 9.74 16.82 23.39 27.44 1.37 9.82 16.77 23.30 27.29

Conditional 1.14 8.77 17.38 24.22 28.34 1.16 8.79 17.32 24.15 28.25

Perfect assumptions 1.18 6.60 9.41 11.32 13.06 1.20 6.55 9.19 11.07 12.74

Gas

Unconditional 1.71 6.00 11.07 15.56 16.55 1.50 5.70 10.76 15.25 16.35

Conditional 1.58 5.30 11.55 16.06 17.23 1.44 4.89 11.31 15.88 17.17

Perfect assumptions 1.53 5.44 8.03 10.38 10.22 1.37 4.76 7.17 9.35 9.58

Electricity

Unconditional 1.65 4.53 7.39 9.70 11.31 1.73 4.63 7.12 9.31 10.83

Conditional 1.58 4.38 7.44 9.87 11.52 1.68 4.54 7.27 9.54 11.12

Perfect assumptions 1.55 4.60 6.91 8.59 9.70 1.66 4.64 6.63 7.95 8.93

Table B4: RMSFE - Main specification vs. tax-uncorrected, full sample
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Main specification Tax-uncorrected

h = 1 h = 3 h = 6 h = 9 h = 11 h = 1 h = 3 h = 6 h = 9 h = 11

HICP Energy

Unconditional 0.24 2.53 4.23 5.31 5.82 0.23 2.56 4.35 5.55 6.05

Conditional 0.20 2.30 4.29 5.32 5.69 0.19 2.28 4.37 5.50 5.86

Perfect assumptions 0.21 0.69 1.31 1.69 2.03 0.19 0.72 1.31 1.68 1.98

Car fuels

Unconditional 0.41 4.19 7.04 8.35 8.73 0.40 4.19 7.13 8.54 8.93

Conditional 0.36 3.81 7.12 8.17 8.19 0.35 3.77 7.14 8.28 8.32

Perfect assumptions 0.33 1.14 2.25 2.22 2.53 0.33 1.17 2.19 2.08 2.36

Liquid fuels

Unconditional 1.04 7.56 12.02 15.93 17.39 1.05 7.59 12.02 16.01 17.44

Conditional 0.84 6.62 11.90 15.64 16.41 0.83 6.59 11.90 15.68 16.44

Perfect assumptions 0.91 2.25 4.99 4.91 5.44 0.91 2.27 5.00 4.85 5.41

Gas

Unconditional 0.79 1.91 3.13 4.02 4.20 0.81 1.85 3.08 4.04 4.21

Conditional 0.79 1.76 2.91 3.96 4.24 0.82 1.69 2.86 4.01 4.31

Perfect assumptions 0.77 1.62 2.49 3.01 3.23 0.79 1.58 2.41 2.90 3.13

Electricity

Unconditional 0.65 1.04 1.52 1.67 1.49 0.64 1.41 2.18 2.22 1.78

Conditional 0.65 1.04 1.52 1.70 1.49 0.64 1.41 2.20 2.26 1.84

Perfect assumptions 0.67 1.04 1.47 1.64 1.39 0.64 1.39 2.11 2.13 1.63

Table B5: RMSFE - Main specification vs. tax-uncorrected, Pre-Covid sub-sample
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B.4 Medium-sized BVAR including all sub-components at monthly frequency

and crude oil and nautral gas prices

Monthly STIP BVAR incl. all monthly components

h = 1 h = 3 h = 6 h = 9 h = 11 h = 1 h = 3 h = 6 h = 9 h = 11

HICP Energy

Conditional 0.73 3.82 7.52 10.73 12.85 2.56 3.53 7.89 11.45 13.80

Perfect assumptions 0.78 2.80 4.18 5.44 6.34 2.70 4.25 5.22 5.56 5.45

Unconditional 1.14 4.56 7.93 10.86 12.89 2.69 4.34 7.53 10.81 13.27

Car fuels

Conditional 1.47 4.08 7.77 10.16 12.26 4.96 5.72 9.73 12.50 14.33

Perfect assumptions 1.55 2.30 2.63 3.16 4.08 5.53 6.49 9.04 10.53 11.87

Unconditional 2.47 5.82 8.40 10.63 12.82 4.78 6.77 9.91 12.11 14.77

Liquid fuels

Conditional 2.75 9.88 17.24 24.10 28.40 11.13 12.23 22.80 29.87 33.32

Perfect assumptions 3.19 6.80 7.96 10.22 11.94 11.28 12.67 17.66 20.57 20.58

Unconditional 3.61 11.97 18.46 24.42 28.60 11.25 15.24 23.28 28.94 33.05

Gas

Conditional 1.56 5.30 11.56 16.08 17.24 1.80 5.89 12.22 16.47 18.35

Perfect assumptions 1.50 5.46 8.04 10.41 10.26 1.84 6.36 7.61 7.63 7.67

Unconditional 1.67 5.97 11.06 15.53 16.52 1.88 6.20 11.21 15.30 16.65

Electricity

Conditional 1.57 4.39 7.45 9.86 11.51 1.64 4.17 7.95 10.23 11.89

Perfect assumptions 1.57 4.61 6.89 8.58 9.71 1.70 4.72 7.01 7.52 8.21

Unconditional 1.67 4.56 7.41 9.74 11.35 1.71 4.51 7.71 10.03 11.69

Table B6: RMSFE - Main specification vs. medium-sized BVAR including all monthly compo-
nents, full sample
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Monthly STIP BVAR incl. all monthly components

h = 1 h = 3 h = 6 h = 9 h = 11 h = 1 h = 3 h = 6 h = 9 h = 11

HICP Energy

Conditional 0.52 2.34 4.16 5.04 5.46 0.60 2.56 4.61 6.02 6.69

Perfect assumptions 0.64 0.93 1.29 1.75 2.03 0.62 1.68 2.82 3.70 4.14

Unconditional 0.69 2.92 4.39 5.30 5.88 0.65 2.90 4.45 5.84 6.40

Car fuels

Conditional 1.06 3.75 6.76 7.63 7.82 1.60 4.32 7.20 9.05 9.75

Perfect assumptions 1.18 1.55 2.16 2.67 2.84 1.54 2.90 4.56 5.63 6.09

Unconditional 1.64 4.89 7.16 8.30 8.91 1.83 4.97 6.81 8.84 9.54

Liquid fuels

Conditional 2.58 6.83 11.07 14.02 15.34 2.60 8.09 13.27 17.49 19.18

Perfect assumptions 3.06 2.45 4.40 4.61 5.62 2.67 5.09 7.18 9.50 10.75

Unconditional 2.66 7.94 11.82 15.14 17.01 3.13 9.06 13.16 17.44 19.03

Gas

Conditional 0.79 1.76 2.90 3.96 4.24 0.63 1.51 2.80 4.10 4.54

Perfect assumptions 0.77 1.62 2.48 3.01 3.23 0.68 1.50 2.29 3.12 3.49

Unconditional 0.79 1.91 3.12 4.02 4.19 0.68 1.67 2.88 4.00 4.28

Electricity

Conditional 0.65 1.05 1.53 1.70 1.48 0.66 1.03 1.64 1.89 1.66

Perfect assumptions 0.67 1.04 1.47 1.65 1.39 0.66 0.97 1.42 1.57 1.39

Unconditional 0.65 1.05 1.52 1.67 1.49 0.65 1.02 1.63 1.82 1.57

Table B7: RMSFE - Main specification vs. medium-sized BVAR including all monthly compo-
nents, pre-covid sample
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