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Abstract

We compare networks constructed using five commonly used methods and pub-

licly available daily market data to networks based on reported exposures along sev-

eral dimensions of the balance sheet, i.e., loans, bonds, equity. Our findings suggest

that while the global network structure remains stable, individual exposures are more

dynamic. The main message from the regression analysis is that the market-based

networks do their job relatively well, however, various market-based networks capture

different types of exposures. All the measures reflect common portfolios of bonds and

loans. Equity-based measures match better direct and indirect equity, while credit-risk

measures capture direct bonds. None of the measures robustly identify direct inter-

bank lending.

Keywords: banking regulation, financial networks, interconnections, market-based

networks, true-exposure networks
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Non-technical summary

Since 2008-2009 financial crisis, network analysis focusing on systemic risk and contagion

propagation has been used to access stability of the financial system.1 Regulatory agencies

have invested heavily in collecting granular data on exposures across different financial

institutions, often focusing on banks. However, these granular data are available to only a

small circle of researchers and regulators and only for a subset of banks within a subset of

banking systems. To overcome this problem, multiple methods were proposed to reconstruct

networks using publicly available data.

In this paper, we focus on how well and what market prices reflect regarding interbank

exposures observed in the confidential balance sheet data. First, we construct several bench-

mark networks based on balance sheet data. Four of these networks reflect direct exposures

between banks in loans, cross-holdings of bonds and equity, and cross-holdings of non-traded

equity or participation/ownership. The remaining four networks capture indirect exposures,

or overlapping portfolios, across the same set of assets. Second, we construct five networks

using market data based on estimation techniques widely used in the literature. These ap-

proaches use either data on simple partial correlations of equity returns Craig, Sald́ıas (2016)

(CS), estimates constructed from both equity returns and volatility (Diebold, Yılmaz (2014)

(DDLY), Demirer et al. (2018), tail-risk probabilities Hautsch et al. (2014), Hautsch et al.

(2015) (HSS)), default probabilities (Duan et al. (2012) (PD), Chan-Lau et al. (2016)) or

credit default swaps (CDS) price data (Brownlees et al. (2020)). Finally, we compare these

market-based networks to the balance-sheet based networks to uncover which particular

exposures they reflect.

These comparisons go in several directions. First, we look at graphical representation

of market-based networks (MBN). Next, we compare their global network characteristics

to those of the balance-sheet networks (BSN). We find that most of the networks exhibit

properties common to all financial networks such as small-world structure with all nodes

being connected in one graph despite a relatively low density of links. Second, we compare

MBN to BSN edge by edge using similarity measures such as simple correlations, Jaccard,

Hamming and accuracy measures for adjacency (0-1) matrices, as well as cosine similarity

1See details about systemic risk in financial networks in survey by Jackson, Pernoud (2021).
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for weighted links. We document that various measures highlight different aspects with no

single measure being ideal for assessing the similarity between two networks.

Finally, the core of our study is a regression analysis. We run four types of regressions

that look at a relationship between an increase in intensity of balance-sheet exposures by

one standard deviation and the probability/intensity of observing a link in a market-based

network. We study the extensive margins using logit regressions while the intensive margins

are analysed using Poisson specification that addresses multiple zeros in our database due to

networks sparsity. We also run these regression in two directions. Indeed, as we are exploring

associations between the MBN and BSN rather than causal models, we first look how MBN

can correctly guess balance-sheet exposures. In other words, each link of a single balance

sheet item is regressed on the corresponding links of all of the market-based networks. Then

we examine the associations in the other direction by analyzing which BSN exposures are

important in explaining a single MBN set of exposures.

Our findings suggest that the various market-based networks reflect different information

in the balance sheet exposures, but, overall, all market-based networks reflect better expo-

sures related to common portfolio holdings. On the other hand, credit-risk market-based

networks such as the default probability and CDS networks identify well balance sheet vari-

ables related reflecting credit risk, i.e., indirect loan and bond portfolios as well as direct

bonds. Measures based on returns and return volatility capture mostly common loan and

bond portfolios that are sources of banks’ variability in returns but also direct and indirect

equity exposures.

Granular data on interbank interconnections are not available to academics and most

regulatory institutions, but systemic risk and contagion analysis are widely studied using

simulated networks. Our policy implication suggests that one should be judicious in the

choice of method to construct a network from market data. For example, to investigate

propagation of a shock via bilateral links, one should use a network that captures credit

risk. In this case, a network reconstructed using an approach based on equity prices may be

less relevant than those constructed via techniques that focus, for example, on probability

defaults.
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1 Introduction

Network analysis is used as an important tool to assess stability of financial systems. Fol-

lowing the 2008-2009 financial crisis, many central banks have invested heavily in collecting

granular data on exposures across different financial institutions, particularly focusing on

banks. However, even in those banking systems where the data are collected, granular data

are available to only a small circle of researchers and regulators. To overcome this problem,

multiple methods have been proposed to reconstruct networks using publicly available data,

either partial balance sheet data or market data.

The reconstructed networks are often used to run contagion analysis, a recognised tool

for stress testing a financial system. For example, the International Monetary Fund (IMF)

applies the approach by Diebold, Yılmaz (2014) to analyze stability of a banking system

in the Financial Sector Assessment Program2. However, a question arises how well recon-

structed networks reflect the reality. As for the reconstruction methods applied to partial

balance sheet data, Anand et al. (2018) provide a comprehensive analysis of those, conclud-

ing that the choice of the best methods depends on the choice of a specific network property

one seeks to preserve during the reconstruction.

In our paper, we are interested in focusing on networks reconstructed using publicly

available market data. We aim to investigate what these networks represent in terms of

granular banks’ balance sheet exposures. Do they reflect exposure-based networks well,

and if so which exposures: direct cross-holdings of claims on each other or indirect common

portfolios? Which market-based approach reflects a particular balance-sheet network (BSN)

most closely, and which aspects of the balance sheets do a single market-based network

(MBN) represent? Finally, is there a combination of market-based approaches that achieves

a closer representation of a balance sheet network?

For the market-based networks, key is a question about information flows from assets

held by a bank to market participants who evaluate bank’s profitability (as reflected in

equity prices) or bank’s credit risk (as reflected in default probabilities or CDS spreads).

These differences in available information are reflected in two types of networks: indirect

2For instance, IMF.FSAP.Norway (2015), IMF.FSAP.Germany (2016), IMF.FSAP.Spain (2017).
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networks that shed light on what participants believe about assets that might be held by

banks, and how the two banks are related via the assets they hold. Often the market is quite

knowledgeable about banks’ assets or at least asset categories. The second type of networks is

direct networks which reflect information about bilateral relationships among banks, notably,

interbank lending or security holdings. This information is potentially hidden from the

market.3

In the analysis, we use rich granular proprietary data on interbank exposures and port-

folio holdings of a set of major European banks. These are quarterly data from 2013q3 to

2019q4. Large Exposures data set from COREP is employed to construct direct networks

of bilateral interbank loans and indirect networks of common loan portfolios. Securities

Holdings Statistics (SHS-G) database is used to build direct networks of bilateral securi-

ties holdings and indirect networks of common securities portfolios. Indirect exposures are

computed as a cosine similarity of portfolios of two banks.

To construct market-based networks, we take five different methods that are well-known

in the literature. Those methods cover different aspects of the market data and are based

on co-movement of volatilities as well as co-movement in returns (Diebold, Yılmaz (2014),

Demirer et al. (2018)) - DDLY further on; partial correlation of equity returns (Craig, Sald́ıas

(2016)) - CS; partial correlation of idiosyncratic default intensities using the CDS contracts

(Brownlees et al. (2020)) - CDS; partial correlation of forward-looking probabilities of default

(Chan-Lau et al. (2016)) - PD, and tail-risk network (Hautsch et al. (2015)) approach -

HSS. From a methodological point of view, these approaches also cover three main types

of network construction, namely, linear and contemporaneous (CS and CDS), linear and

dynamic (DDLY and PD), and non-linear and contemporaneous (HSS).

We compare market-based and balance-sheet-based networks to identify which of the

MBN methods can better guess presence and size of links in BSN, and which of the balance-

sheet variables reflect the existence and intensity of links in MBN. We also invert our analysis

to see which MBN methods should be used in order to reconstruct different types of the BSN

networks. In our exercise we do not talk about causal relationship as all the links are formed

3Some information flows also involve a bank learning about its asset, as in bank monitoring or in the
private information implicit in relationship lending. For a survey see Ongena et al. (2000)

ECB Working Paper Series No 2867 5



endogenously, and balance-sheet and market variables all affect each other. Nevertheless,

we believe that our analysis is important as it explores the connections between the market-

based networks and balance-sheet exposures. And to the best of our knowledge, it is the

first exercise of such a scale.

Our analysis consists of three steps. We start with a graphical analysis that illustrates

differences between the market-based networks visually.4 We observe significant differences

among networks in their density, link distribution, cross- and within-country connections,

etc. We further describe the networks using global characteristics. We find that while

networks evolve over time as we can see on the charts, the global network structure remains

stable for both the market- and balance-sheet based networks. We also document that

most networks exhibit small world properties characterising financial networks (Bech, Atalay

(2008), Cont et al. (2010)), such as low density, negative assortativity and low average

shortest paths.5 This suggests that these networks have a hub-type structure with some

well-connected banks connecting all the other banks in one graph. Exceptions include the

DDLY network that is complete by construction, the almost complete CDS network due to

very low number of nodes (17 nodes in the CDS network vs 55 in all other networks), and the

indirect balance-sheet networks with a density higher that normally observed for financial

networks. The main reason for the last observation is that the indirect connections arise due

to common portfolios and in some sense appear more easily than direct connections which

require costly monitoring efforts (Craig, Ma (2018)). For the same reason, these networks

also exhibit high clustering where two banks connected with a third one also connected with

each other. The CS network attracts additional attention by being somewhat different from

other networks. It is the most sparse network among the market-based network, and it has

mostly positive assortativity.

In the second step, we run bivariate comparison of network edges among various pairs of

networks. In particular, we use simple correlation, three measures comparing only presence

or absence of links (Jaccard, Hamming and Accuracy), and the Cosine similarity compar-

4We do not plot the balance-sheet networks due to confidentiality constraints
5Density corresponds to a share of existing links over all possible links. Assortativity is a correlation

between densities. Negative assortativity means that well-connected nodes are connected with less-connected
nodes. Average shortest path refers to a number of links needed to connect to randomly chosen banks.
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ing also link size. We document that various measures highlight different aspects with no

single measure being ideal for assessing the similarity between two networks. Despite this

complexity, we note several consistent patterns across these measures. Most market-based

networks effectively mirror indirect bonds, indirect loans, and direct bonds, while showing

less agreement with indirect and direct equity, and direct loans. These results serve us the

basis for further econometric analysis performed in the next step.

We run four types of regressions that look at a relationship between an increase in

intensity of balance-sheet exposures by one standard deviation and the probability/intensity

of observing a link in a market-based network. We study the extensive margins using logit

regressions while the intensive margins are analysed using Poisson specification. The latter

allows us to address multiple zeros in our database as most of the networks are very sparse.

We also run these regression in two directions. Indeed, as we are exploring associations

between the MBN and BSN rather than causal models, we first look if MBN can correctly

guess balance-sheet exposures. In other words, each link of a single balance sheet item is

regressed on the corresponding links of all of the market-based networks. Then we examine

the associations in the other direction by analyzing which BSN exposures are important in

explaining a single MBN set of exposures.

Our main findings are the following. The market-based networks capture largely indirect

exposures reflecting essentially a common business model among banks as such information

is more easily available to public investors. Indirect bonds and indirect loans, constituting

the largest part of banks’ balance sheets, are the links most often represented by links in

the market-based networks. To a lesser extent, direct bonds are also represented by some of

the networks, particularly by those that capture credit risk such as the default-probability

network and CDS. On the other hand, networks based on equity prices (volatility and

returns) such as the DDLY and CS reflect direct and indirect equity exposures. Finally,

direct interbank loans that often serve as an input to the interbank contagion analysis

cannot be robustly estimated by any of the market-based networks. This is potentially

due to the fact that this information is proprietary and not available to the market, but

also probably because direct interbank loans constitute a relatively tiny share of banks’

exposures.
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Our policy implication suggests that one should be judicious in the choice of method to

construct a network from market data. Whether the use of a specific MBN or a particular

BSN is appropriate for contagion analysis depends on the precise mechanism of financial

contagion that is used. Indergand et al. (2023) corroborate this finding from a different

perspective. They show the complementarity of information carried by debt and equity

for the assessment of the banking sector resilience. That goes in line with our findings

that one should use market-based networks carefully fully realising the final purpose of

that. We show that equity-based market networks capture better the direct and indirect

equity balance sheet networks, while debt-based market networks reflect better direct bonds

balance sheet networks.

While we find that market-based networks reflect balance-sheet information, our results

are somewhat different from the results of Abbassi et al. (2017), whose paper is the closest to

ours. The authors provide a comparison of a market-based network constructed using CDS

prices to German balance-sheet-networks covering three types of exposures: direct interbank

lending, common lending portfolios, common securities exposure to core and peripheral

European countries. The sample consists of 13 publicly traded German banks. Abbassi et al.

(2017) show that CDS network reflects well true exposures: interbank lending, similarity

in lending practice and asset holdings towards troubled European countries. In our case,

we find that the CDS measure6 captures only direct and indirect bond exposures, and

this result is robust across all specifications. Unlike Abbassi et al. (2017), we focus on a

large set of European banks and compare several methods in terms of their performance to

reflect balance-sheet information. This provides a wider insight of what various statistical

dependencies in market data represent for observed data on balance sheet connections.

Brunetti et al. (2019) also look at the similarity between true-exposure (physical) net-

works of short-term interbank lending and equity-based network of Diebold, Yılmaz (2014).

The authors find that the two networks behave similarly in quiet times, but respond dif-

ferently to financial turmoil. The market-based network shows an increase in intercon-

nectedness potentially due to remarkable increase in equity correlations as also found by

Cont, Wagalath (2013). On the other hand, interconnectedness in interbank lending net-

6We are using exactly the same approach by Brownlees et al. (2020) to construct the CDS network.
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work dropped significantly following decline in trust and confidence in market participants.

Indeed, short-term (overnight and up to 1 week) interbank lending markets, particularly

unsecured, are known to be sensitive to market conditions, and thus network structures of

these markets may vary significantly over time (e.g., Denbee et al. (2020)). This is not the

case for the long-term loans and asset holdings, since these networks reflect more long-term

relationships and certain assets cannot be shed easily from one moment to another.

Our contribution to the literature is twofold. First, we contribute to the literature that

aims to reconstruct an interbank network from market data or from partial balance sheet

data. As granular data on interbank interconnections are not available to academics and

most regulatory institutions, but systemic risk and contagion analysis are widely studied

using simulated networks, multiple approaches exist for network reconstruction. For exam-

ple, Diebold, Yılmaz (2014), Brownlees et al. (2020), Hautsch et al. (2015) build networks

from market data, while Anand et al. (2018) run a horse race of methods to reconstruct

networks from partial balance sheet data. We compare different approaches aiming to build

networks using publicly available market data and evaluate their performance relative to

the true balance-sheet data.

Second, we contribute to a larger network literature by providing information on the

structure of European interbank networks across different assets. Thus we contribute to

the empirical literature describing network characteristics over a relatively long period of

time (Boss et al. (2004), Bech, Atalay (2008), Cont et al. (2010)) and confirm that financial

networks, particularly, of direct exposures are very sparse and exhibit a small-world property.

While individual links may vary over time, the structure and aggregate network properties

remain stable over time. As expected, networks reflecting indirect exposures are denser than

those of direct exposures with many more banks being connected to each other, but they are

far from complete. They still have a hub structure with smaller banks tending to connect

to big banks seen in their negative assortativity (Craig, Peter von (2014)).

We further contribute to the multiple theoretical studies that focus their analysis on

interbank exposures (Freixas et al. (2000), Allen, Gale (2000), Allen et al. (2012)) by pro-

viding information on the network structure and differences in networks based on various
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asset classes.7 We provide statistics and characterisation of the European banking networks

that can be helpful to this theoretical literature to design their models. For example, using

our data, we provide further evidence to the result of Elliott et al. (2021) and Jackson,

Pernoud (2019) who show that banks are exposed to the same counterparties via different

assets.

The rest of the paper is structured as follows. Section 2 describes the data used to

construct balance sheet data. Section 3 reports all the five methodologies to construct

market-based networks. Section 4 compares market-based and balance-sheet based networks

using graphical analysis, global characteristics and bivariate edge comparison via similarity

measures. Section 5 discusses results of the econometric analysis. Section 6 provides results

of the robustness tests. Finally, Section 7 concludes.

2 Balance sheet networks: data and construction

In this section, first, we describe how we define a sample of banks to construct both balance-

sheet and market-based networks for our analysis. Second, we focus on balance-sheet net-

works and explain the data and the methodology used. We finish the section by providing

descriptive statistics of true exposures among banks in our sample.

We start from a list of systemically important banks supervised by the ECB for which

the ECB collects granular data on balance sheet exposures with quarterly frequency. We

then retain banks that have either ISIN or LEI in databases of securities holdings statistics

by banking group (SHS-G) and large exposures (LE COREP) that span the period from

2013q3 to 2019q4.8

We use Large Exposures data set from COREP to construct direct networks of bilateral

interbank loans and indirect networks of common loan portfolios. Banks report quarterly

all their exposures to individual counterparties by instrument type, loans, debt securities

and equity, that are higher than EUR 300 million or 10% of their capital.

SHS-G data is used to build direct networks of bilateral securities holdings and indirect

7Allen, Babus (2009) is a great survey to look at for further details.
8In this way we cover about 70% of total assets of the European banking system and time period from

2013q3 - 2019q4.
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networks of common securities portfolios. Banks report quarterly holdings of individual

debt and equity securities at a security (ISIN) level.

While banks report data at the consolidated group level, counterparties are reported at

the entity level. To construct a network, the counterparty data are aggregated to the group

level (see Adam et al. (2019) for more details on the construction of the database). We

complement the database with data on total assets and CET1 capital at the group level

obtained from Bloomberg.

We then proceed with construction of true exposure networks by making the following

modelling choices. We scale each exposure by total assets TAit. Then we build directed net-

works based on scaled exposures, Eijt/TAit, and undirected networks by taking an average

of the weighted links going in both directions (Eijt/TAit + Ejit/TAjt)/2.

Finally, we construct networks based on portfolio, or indirect, exposures using cosine

similarity measure.9 Cosine similarity measures the cosine of the angle between two vectors

projected in a multi-dimensional space, and it does not depend on size. In our case, a

portfolio of assets represents such a vector in a multi-dimensional space equal to the number

of assets in the portfolio.

cos θ =

∑n
i=1 aibi√∑n

i=1 a
2
i

√∑n
i=1 b

2
i

(1)

Our data allow us to define portfolio at different granularity: by security or by loan,

by counterparty/borrower, by country and sector. We choose a borrower level to compute

cosine similarity for loans and securities. The original cosine similarity leads to an undirected

network. But as it makes a significant difference if a bank is similar to another bank by

10% or 90% of its portfolio, we prefer to scale links by common exposures, thus also making

similarity links directed. To make a link from bank i to bank j, ij, scaled and directed, we

scale the cosine value by bank i’ common exposures with bank j weighted by bank i’ total

assets, TAi. We do a similar operation for the link ji where we scale the cosine value by

bank j’ common exposures with bank i weighted by bank j’ total assets, TAj.

9Words ”undirected” and ”indirect” refer to different notions. We use undirected networks to refer to
a graph characteristic meaning that a link between nodes A and B is equal to the link between B and
A. Indirect exposures refer to common portfolios of nodes A and B. By definition, indirect exposures are
represented by undirected networks. In our analysis, we modify indirect and direct exposures to become
directed and undirected graphs, respectively.
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To sum up, we construct eight true-exposure networks: direct (loans, securities (equity,

bonds, ownership (unlisted equity holdings)) and indirect, reflecting common portfolios,

(loans, securities (equity, bonds, ownership (unlisted equity holdings)) for each reported

date from 2013q4 to 2019q3.

Table 1 reports the descriptive statistics of true exposure variables we use further in

regressions. All true exposure variables are positive. As market-based links can be both

directed and undirected depending on the method, we construct BSNs links in both versions

as well, directed and undirected. Direct exposures are transformed into undirected networks

by taking an average of the direct exposures scaled by respective total assets. Mean indirect

exposures are larger than direct exposures by an order of magnitude. This is largely expected

since directs links are more expensive to maintain while indirect links are also under a lesser

control of banks.

Table 1: Descriptive statistics of balance-sheet exposure variables

Statistics: Min Mean Median Max SD Observations
Variables
Panel A: weighted directed networks
wDL directed 0 0.0025 0.0006 0.434 0.01 5181
wIL directed 0 0.02 0.0008 0.807 0.07 31236
wDB directed 0 0.0005 0.0001 0.01 0.001 11894
wIB directed 0 0.05 0.023 0.98 0.32 27936
wDE directed 0 0.00007 0.000006 0.0057 0.0003 7620
wIE directed 0 0.0006 0.000016 0.041 0.0021 19207
wDP directed 0 0.0003 0.00003 0.006 0.0008 621
wIP directed 0 0.0002 0.000004 0.012 0.0009 1720
Variables
Panel B: weighted undirected networks
wDL undirected 0 0.0015 0.0005 0.217 0.006 5181
wIL undirected 0 0.022 0.0009 0.57 0.065 31236
wDB undirected 0 0.0003 0.0001 0.0068 0.0006 11894
wIB undirected 0 0.059 0.0247 0.99 0.228 27936
wDE undirected 0 0.00005 0.000004 0.0029 0.0002 7620
wIE undirected 0 0.0006 0.000035 0.029 0.0018 19207
wDP undirected 0 0.0002 0.000014 0.003 0.0004 621
wIP undirected 0 0.00025 0.000013 0.0075 0.0007 1720

Notes: Exposures are measured as a fraction of total assets. In the name of each variable w stands for weighted by total assets. D - direct
exposure, I - indirect or common portfolio exposure, L - loans, B - bonds, E - equity, P - equities non securities or fund shares. Panel A: direct
exposures are directed by construction, indirect exposures are made directed by weighing them by the amount of common exposures between the
two banks scaled by total assets. Panel B: indirect exposures are undirected networks by construction; direct exposures are transformed into
undirected networks by taking an average of the direct exposures scales by respective total assets. Number of observations varies as descriptive
statistics is for non-zero links only.
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3 Market-based networks

In this section, we describe the market data and methods we use to construct market-based

networks.

We obtain daily market data for the sample of banks used to construct true-exposure

networks.10 The data include daily equity prices and CDS contracts (1, 2, 3, 5, 7, and

10-year) denominated in Euros. We remove banks with zero or constant prices and banks

with zero intraday volatility (no intraday changes in prices). We also remove subsidiaries

that belong to the same banking group since our true exposure data (LE COREP, SHS-G)

are consolidated at the group level.11

It is worth noting that only large publicly traded banks have CDS instruments, thus

significantly limiting the sample size in the networks based on CDS data.

The market-based networks rely on daily data and have to be computed on a window of

observations. On the other hand, the balance networks are snapshots at quarter ends. To

reconcile the two, we choose to calculate a market-based network using daily observations

over the six months preceding a reporting date of balance-sheet exposures. For example, we

observe a balance-sheet network of direct loan exposures as of December 31, 2018. Then we

take daily data over the previous two quarters, i.e., from July 1, 2018 to December 31, 2018,

to compute a market-based network.12 We use a 6-month rolling window to have enough

observations to estimate market-based networks.

Among the various methods available, we select five distinct approaches from the lit-

erature, which encompass the majority of techniques commonly used to construct market-

based networks. Each approach relies on various data sets and covers different types of risk.

Diebold, Yılmaz (2014) and Craig, Sald́ıas (2016) capture volatility and return market co-

movement using equity returns. Hautsch et al. (2015) also uses equity prices but focuses on

tail-risk and correlation in extreme events. Finally, Brownlees et al. (2020) and Chan-Lau

et al. (2016) capture credit risk using CDS prices and forward-looking default probabilities,

10Daily equity prices are obtained from Bloomberg. In cases where data is missing, we use Eikon for
imputation.

11We keep a subsidiary if two conditions are met: first, it represents significant part of total assets of the
holding company, and second, if it is the only traded (public) part of the holding company.

12The exact dates may change depending on the trading/weekend days.
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respectively.

The approaches also cover main types of network construction, namely, linear and con-

temporaneous (Craig, Sald́ıas (2016), Brownlees et al. (2020)), linear and dynamic (Diebold,

Yılmaz (2014), Chan-Lau et al. (2016)), and non-linear and contemporaneous (Hautsch et al.

(2015)). Linear methods capture average effects while non-linear methods focus on extreme

events or distribution effects. Dynamic networks enrich the assessment with information

from time series unlike contemporaneous networks that use only information available at

time t. This is important as often market players and policy-makers are interested not in

observing current links but how links will change under certain circumstances like spillover

of a market shock.

We now discuss each method in detail.

3.1 Diebold-Yilmaz network. DDLY

The first method, proposed by Diebold, Yılmaz (2014) and Demirer et al. (2018) (DDLY

further on),13 uses a forecast error variance decomposition (FEVD) as a measure of inter-

connectedness. This is one of the most used methods, particularly, among policy-makers.

For example, the International Monetary Fund (IMF) applies it to analyze stability of the

financial system in the Financial Sector Assessment Program (IMF.FSAP.Norway (2015),

IMF.FSAP.Germany (2016), IMF.FSAP.Spain (2017)).

Following Demirer et al. (2018), we rely on equity prices to construct daily range-based

realized stock return volatility.

σ̃2
it = 0.511(Hit − Lit)

2 − 0.019[(Cit −Oit)(Hit + Lit − 2Oit)−

−2(Hit −Oit)(Lit −Oit)]− 0.383(Cit −Oit)
2

(2)

where Hit, Lit, Cit, Oit - are logs of daily high, low, opening and closing prices for bank

stock i at day t. Their connectedness measure answers the following question: how much of

entity i′s future uncertainty (at horizon H) is due to shocks arising from entity j? Bank j

13We thank Laura Liu and Mert Demirer for sharing the code with us and useful suggestions regarding
the code.
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contribution to bank i H - step-ahead generalized forecast error variance :

θgij(H) =
σ−1jj

∑H−1
h=0 (e

′
iAhΣej)

2∑H−1
h=0 (e

′
iAhΣA

′
hej)

, H = 1, 2, ... (3)

where Σ - is covariance matrix of disturbance vector ε, σjj - is standard deviation of

disturbance of the equation j , ei - is selection vector with one at position i and zeros

otherwise. While different pairwise directional connectedness from j to i at different horizons

is:

θ̃gij(H) =
θgij(H)∑N
j=1 θ

g
ij(H)

(4)

Following the authors, we use Adaptive Elastic Net to estimate the large Vector Autore-

gression model. The DDLY network has several important features. It allows for pseudo-

dynamic networks, which estimate different static networks for different periods, as well

as dynamic networks, which can be obtained by rolling window estimation. The resulting

network is directed and complete with positive weights.

We take the original DDLY approach (Demirer et al. (2018)) as a baseline measure. We

further modify it in several ways to create alternative measures. Similar to the approach

suggested in Hale, Lopez (2019) and Barigozzi, Brownlees (2019), we remove common factors

by using defactored version of the initial model. We construct a network of residuals after

regressing bank’s return volatility on four common factors - European stock market index,

European banking sector index, option-based implied volatility European market index, and

option-based implied volatility European banking sector index.14 By doing so we capture

only idiosyncratic movements across banks. For robustness we also construct a network on

demeaned volatility using cross-sectional mean instead of factors. Finally, using Demirer

et al. (2018) we build a network, based on log returns.

3.2 Craig-Saldias network. CS

The second approach, proposed by Craig, Sald́ıas (2016), uses an interconnection measure

based on correlations and assessed in a two-step procedure.15 This method is careful about

14We choose a maturity of 6 months as the most liquid one.
15We thank Craig, Sald́ıas (2016) for providing us with the code.
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removing strong common factors, which may often be the reason behind identified links.

Following Craig, Sald́ıas (2016) (hereafter referred to as CS), we remove strong factors using

principal component analysis (PCA), then conduct cross-sectional dependence (CD) and

compute the correlation matrix. In the second step, we apply regularization or thresholding

to the correlation matrix. This step selects the correlation coefficients, ρ̂ij, among weakly-

dependent residuals that are statistically different from zero at a given significance level (five

percent) from all possible N(N − 1)/2 elements of the correlation matrix using the Holm-

Bonferroni method). The resulting network, using the Craig, Sald́ıas (2016) approach, is a

partial correlation network of bank equity returns. It is undirected and sparse with weights

in a range between -1 and 1.

As a baseline measure we take one-factor and a five percent threshold (CS further on).

As a sensitivity check, we also consider the following combinations: one-factor and a 10%

threshold (CS TH10 F1 further on), one-factor and a 25% threshold (CS TH25 F1), and

three-factors with a 25% threshold (CS TH25 F3).

3.3 Tail-risk network. HSS

The third approach, developed in Hautsch et al. (2014) and Hautsch et al. (2015), proposes

to measure interconnections between banks at extreme events.16 A tail risk network is based

on the conditional Value-at-Risk (VaR) of equity returns. It shows how much market capi-

talization of a bank will drop in one day (with a given probability 10%) following a distress or

a sharp decline in other banks’ equity prices. The firm-specific VaRs are estimated as func-

tions of firm-specific characteristics, macroeconomic fundamentals, and tail-risk spillovers

from other banks, which are captured by loss exceedances. Loss exceedance is a common

tail-risk metric, it equals to return values when returns are below the empirical 10% quantile,

and zeros otherwise.

The complete set of risk-drivers is given by: Ri
t = (Zi

t−1,Mt−1, N
−i
t ), where Zi

t−1 - balance

sheet characteristics of bank i, Mt−1 - general market conditions, N−it - “network impacts”

from all other banks (loss exceedances).17 To estimate VaR, we use a linear quantile regres-

16We thank Julia Schaumburg for giving helpful suggestions regarding the code.
17Balance sheet characteristics include: leverage, that corresponds to total assets divided by total equity;

maturity mismatch measured as the ratio of short-term debt to total debt; and size, proxied by the logarithm

ECB Working Paper Series No 2867 16



sion with Lasso-regularization:

Returni,t = ξi0 + ξi,t1 Z
i
t−1,+ξ

i
2Mt−1 + ξikN

−i
t + ei,t0 (5)

ˆV aRi
t = ξ̂i0 + ξ̂i,t ∗Ri

t (6)

where, Returni,t is a daily equity return of bank i at day t. The use of loss exceedance

assumes that bank k affects the VaR of bank i only if bank k is under stress. The idea

is to estimate how a relatively large decline in daily equity returns of bank k, (Nk
t ), feeds

through bank’s i returns (more precisely, to its VaR), other things being equal. The vector

of parameters of interest is ξik. Each element of the vector shows how much Value-at-Risk of

bank i would change if the loss exceedance of bank k rose by one percentage point. These

parameters, which can be both positive and negative, serve as our weights in the network.

Following Hautsch et al. (2015), we address the high-dimensionality issue (potentially

there are a lot of unimportant risk-drivers in Ri
t, but we are interested in choosing only a sub-

set of relevant factors), using a Least Absolute Shrinkage and Selection Operator (LASSO)

technique (see Belloni, Chernozhukov (2011)) that allows for identification of relevant tail

risk drivers for each bank in a data-driven way. Two types of cross-validation (CV) are used:

K-fold (out-of-sample) and BIC (in-sample). After finding an optimal model (or, alterna-

tively, an optimal level of network scarcity) via cross-validation, we discard those factors

in Ri
t which are smaller than the threshold (0.0001, see Hautsch et al. (2014)). We then

re-estimate the model without shrinkage using the final subset of regressors left after the

shrinkage and thresholding process.

The analysis is repeated for all banks in the system, and tail-risk interconnections can

then be depicted and summarized in a network graph. The resulting tail-risk network is

directed and sparse with weights being positive or negative.

3.4 Default probability network. PD

Chan-Lau et al. (2016) approach focuses on a forward-looking probability of default (PD).

of total assets. General market conditions are proxied by variables that are described in Table 19 in Appendix
A.1.
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We choose this approach for two reasons: first, default probabilities measure credit risk and

financial distress. Second, forward-looking measure dynamically responds to the state of the

economy.

The data for this approach is provided directly by the authors.18 The Probability of

Default (PD), defined by the Credit Research Initiative (CRI), measures the likelihood that

an individual bank will be unable to fulfill its financial obligations (Duan et al. (2012)).

The CRI PD features term structures ranging from 1 to 60 months. More specifically, to

construct default correlations Duan, Miao (2016) proceed as follows. First, the authors

identify a set of predetermined credit risk factors, estimate the factor model, and produce

the factor model residuals. In the second step, they estimate the time series dynamics

of the predetermined credit risk factors and individual factor model residuals. Next, the

authors construct a sparse correlation matrix for the factor model residuals after taking out

their individual time series effect. Finally, they further calibrate the model to the term

structure of PDs at the time of application to take advantage of the information embedded

in longer-term PDs.

The full correlation matrix is then transformed into a partial correlation matrix that by

definition reflects the residual correlation after subtracting any indirect impact from other

parties in the system, or direct default risk linkages among institutions. The sparsity of

the network is achieved through the use of the regularisation algorithm CONCORD (Khare

et al. (2015)). The resulting partial correlation network, representing forward-looking default

probabilities is sparse and undirected with the weights ranging from -1 to 1.

3.5 CDS network. CDS

This approach is based on a credit risk model proposed by Brownlees et al. (2020).19 We

choose this method as it allows us to observe interconnections reflecting credit risk. CDS

prices are particularly convenient as they explicitly price credit risk, unlike share prices.

The authors start with a reduced-form credit risk model where the dependency on de-

18Thanks to Chan-Lau et al. (2016) and Duan et al. (2012) for providing us directly with the network
for our sample of banks.

19We refer the reader for details both on the model and methodology to Brownlees et al. (2020). We
thank Brownlees et al. (2020) for kindly providing us with the code.
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faults among financial entities originates through three channels: a global factor, a country-

specific factor, and a banking network channel. Default intensity interdependence is induced

both by exposure to common systematic components as well as by dependence between id-

iosyncratic shocks. To bootstrap risk-neutral idiosyncratic default intensities from CDS data

the authors apply standard pricing formulas for single-name Credit Default Swap (CDS) con-

tracts derived in Ang, Longstaff (2013). Next, the credit-risk network is constructed based

on a partial correlation of idiosyncratic components of default intensities using a LASSO

procedure, Adaptive Graphical LASSO.20 The resulting network is sparse and undirected

with weights ranging from -1 and 1.

3.6 Descriptive statistics

Table 2 displays the descriptive statistics of market-based variables.

Panel A of table 2 shows that all the DDLY networks are complete with positive weights

as expected. The original DDLY network as well as modified networks based on intraday

price volatility and return-based network look rather similar with the distributions being

mostly of the same order of magnitude. The only network that stands out is the one

with eliminated common factors but without scaling. Eliminating common factors increases

the maximum value of weights, but it decreases the mean and median. Original paper

Demirer et al. (2018) does not eliminate common factors, thus no need to apply z-score

normalization. However, elimination of common factors leads to weights explosion due

to potentially increased heterogeneity across banks. Indeed, common factors are a big

component in prices and volatilities that make banks look similar to each other. Once

these factors are suppressed, banks become extremely heterogeneous, particularly, in their

variance. Heteroskedasticity might cause a problem in the estimation of the adaptive elastic

net, as the penalty term would be very different for different banks.

Panel B of table 2 displays descriptive statistics of Craig, Sald́ıas (2016) network. First,

this is a partial correlation network, and weights can be both positive and negative. A

positive correlation is interpreted as a co-movement between bank returns, while negative

correlations can be interpreted as a diversification benefit. We report statistics for positive

20For details on Adaptive GLASSO, please see Yuan, Lin (2007), Friedman et al. (2008), Fan et al. (2009).
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and negative weights, as well as all weights combined. Panel B suggests that CS network is

very sparse, as the number of non-zero links is less than 2%. This is partly due to the fact

that CS approach filters out common factors using principal component analysis.

Panel F shows statistics for variations of CS approach with the alternative cut-off thresh-

old for correlation and a number of factors. All the CS networks show very similar statistics.

The only difference worth noting is a drastic reduction in the number of positive links in

the network with three factors.

Panels C, D, and E display the descriptive statistics for the tail-risk network by Hautsch

et al. (2015), for the default probabilities network by Chan-Lau et al. (2016), and for the

credit risk network by Brownlees et al. (2020) respectively. For HSS, PD, and CDS networks

the weights can be also positive and negative. Number of observations is much smaller than

in the DDLY networks but larger than in the CS networks. All the three types of networks

have correlations much lower than in the CS networks with the HSS method producing the

lowest weights.

4 Network comparison

In this section we aim to compare market-based and balance-sheet networks along various

dimensions. We start by looking at a graphical representation of market-based networks

over the full period and change in network structure in different periods.21 Second, we

compare market-based and balance-sheet networks along global network characteristics but

also edge-by-edge. The latter provides us with a first glance into how well links in market-

based networks match links in balance-sheet networks.

4.1 Graphical Analysis

In this subsection, we show how market-based networks differ visually. Networks are com-

puted on daily trading data of 62 European banks from 2013q3 to 2019q4. It is also possible

to observe the evolution of networks over time by drawing individual networks for each

quarter. We report the graphs with network dynamics in Appendix A.2.

21We do not draw balance-sheet networks due to data confidentiality.
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Table 2: Descriptive statistics of Market-based variables

Statistics: Min Mean Median Max SD Observations
Variables
Panel A
DDLY vol 0.0000 1.4290 1.0500 25.4000 1.3646 55058
DDLY vol 4factors scaled 0.0000 1.3064 0.6730 49.3000 1.7489 55058
DDLY vol demeaned scaled 0.0000 1.1670 0.5990 35.7000 1.5882 55058
DDLY vol demeaned 0.0000 1.5134 0.4410 77.5000 4.9823 55058
DDLY return 4factors scaled 0.0000 1.3381 0.8890 25.5000 1.4300 55058
Panel B
CS positive 0.3539 0.5285 0.4819 0.8935 0.1452 820
CS negative -0.4679 -0.3917 -0.3840 -0.3553 0.0301 100
CS -0.4679 0.0072 0.0000 0.8935 0.0686 55058
Panel C
HSS positive 0.0000 0.0027 0.0018 0.0444 0.0030 6887
HSS negative -0.0225 -0.0017 -0.0011 0.0000 0.0019 2122
HSS -0.0225 0.0003 0.0000 0.0444 0.0015 51296
Panel D
PD positive 0.0001 0.1094 0.0665 0.8604 0.1207 7188
PD negative -0.3066 -0.0571 -0.0417 -0.0002 0.0512 2626
PD -0.3066 0.0153 0.0000 0.8604 0.0687 41588
Panel E
CDS positive 0.0001 0.1267 0.0789 0.9401 0.1415 2682
CDS negative -0.5777 -0.0685 -0.0501 -0.0001 0.0636 1644
CDS -0.5777 0.0439 0.0053 0.9401 0.1398 5174
Panel F
CS TH1 F1 positive 0.3416 0.5108 0.4545 0.8935 0.1478 910
CS TH1 F1 negative -0.4679 -0.3809 -0.3734 -0.3425 0.0325 132
CS TH1 F1 -0.4679 0.0075 0.0000 0.8935 0.0705 55058
CS TH25 F1 positive 0.3235 0.4889 0.4342 0.8935 0.1502 1038
CS TH25 F1 negative -0.4679 -0.3662 -0.3579 -0.3236 0.0355 188
CS TH25 F1 -0.4679 0.0080 0.0000 0.8935 0.0730 55058
CS TH25 F3 positive 0.3237 0.4103 0.3821 0.6919 0.0835 328
CS TH25 F3 negative -0.4701 -0.3605 -0.3537 -0.3229 0.0334 198
CS TH25 F3 -0.4701 0.0011 0.0000 0.6919 0.0389 55058

Notes:In the name of each variable DDLY stands for Demirer et al. (2018) approach, CS - Craig, Sald́ıas (2016) approach, HSS - Hautsch et al.
(2015) approach, PD - Chan-Lau et al. (2016) approach, CDS - Brownlees et al. (2020) approach, vol - volatility based network, return - return
based network, words “positive”, “negative” refer to non-zero correlations with the respective sign.
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Figures 1a - 2d demonstrate a graphical representation of volatility network (DDLY),

defactored volatility network (DDLY), defactored return network (DDLY), partial correla-

tion network of equity returns (CS), tail-risk network (HSS), default probability network

(PD), credit-risk CDS network (CDS). In all graphs, a node corresponds to a bank with

a node name being a bank ticker symbol from Bloomberg.22 Node size reflects a weighted

degree, and node color defines a country. A node location within a graph is defined by a

Fruchterman-Reingold and a circle pack layout that allows us to draw illustrative charts

with larger and more connected nodes being closer to the center and all banks of the same

country being clustered together. Edge size and color reflect pairwise directional connected-

ness (to and from) for the directed and partial correlation for the undirected approach. The

edge color goes from light purple (the lowest weight and the weakest connection) to dark

purple (the highest weight and the strongest connection).

Figures 1a, 1b and 1c show networks based on forecast error variance decomposition with

each link reflecting a share of forecast error variance in bank i due to the shock to bank

j, thus weights are non-negative and can be higher than one. All the three networks are

complete networks, with a density equal to 100. These graphs are directed, and the edge

from node i to node j is not necessarily equal to the edge from node j to node i. The three

networks based on volatility, defactored volatility, and defactored return over the full period

of time visually show little difference, however, charts with the evolution of the networks

over time presented in the Appendix A.2 show variability across construction methods.

Figures 2a-2d represent partial correlation networks, thus weights can be both positive

and negative (not seen on the charts) and belong to the interval [-1,1]. Higher positive

weights suggest higher correlation and higher risk of spreading a shock, while negative

correlation implies diversification benefits. The CS network is the most sparse. The CDS

network is almost complete as it consists of only 18 banks versus 62 banks in the full sample.

Already visually, we can observe high heterogeneity across links with few connections being

very strong and the majority of the links being rather weak.

Various approaches capture differently within- and cross-country links. DDLY and CS

methods demonstrate stronger links within-country (more intense connections for the DDLY

22The detailed list of banks is in the appendix A.4.
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(a) DDLY volatility network
(b) DDLY volatility network defactored
with four factors

(c) DDLY return network

Figure 1: DDLY volatility network, DDLY volatility network defactored with four factors, DDLY return
networks, sample 62 banks, 2013q3-2019q4, Node indicates bank, node size - weighted degree, node colour
- country, node location - fruchterman reingold + circle pack, edges size and colour - pairwise directional
connectedness (to and from)

networks and higher clustering for the CS networks) but also capture connections between

countries (Figures 1a-1c and 2a). The networks of tail risk, CDS, and default probabilities

(HSS, CDS, and PD) tend to identify stronger cross-country than domestic links (Figures

2b-2d). In particular, we observe relatively low intensity and low clustering of banks of the

same country.
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(a) CS network (b) HSS network

(c) PD network (d) CDS network

Figure 2: CS, HSS, PD networks, sample 62 banks, CDS network, sample 18 banks 2013q3-2019q4. Node
indicates bank, node size - weighted degree, node colour - country, node location - fruchterman reingold +
circle pack, edges size and colour - pairwise directional connectedness (to and from)
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4.2 Network Characteristics

4.2.1 Aggregate network characteristics

In this subsection, we look at aggregate network characteristics of market-based and balance-

sheet networks. We choose a list of measures following Anand et al. (2018) who run a horse

race of methods to reconstruct financial networks using partial balance sheet data. The

results presented in Figure 3 plot values of all measures for all considered networks for

all time periods. The results Table 3 show average, median, and standard deviation of

measures across years and networks. Below, we discuss network characteristics based on

Figure 3, while the reader can check exact numbers in Table 3. The details on network

characteristics measures can be found in Appendix A.3

For all types of networks, we document high stability of aggregate network characteris-

tics as the dispersion of circles within each column is very small. Networks based on direct

bilateral exposures (DL, DB, DE, DP) have the properties of well-documented financial net-

works (see, i.e., Anand et al. (2018), namely, low density, highly skewed density distribution

(low average degree and high maximum degree), negative assortativity, low clustering and

short average shortest path. All these characteristics indicate that direct networks exhibit

a small-world property and a hub structure where few banks are extremely well-connected

to the rest of the system, and the majority of the banks have very few connections. One of

the reasons for such a structure is that creating and maintaining links is costly, particularly

in lending (see Craig, Ma (2018) for more discussion). Consistent with this hypothesis, we

can see that the degree of direct bond and equity holdings is significantly higher as low cost

is associated with buying these securities on the market.

When we look at the networks of indirect exposures, through portfolio commonality (IL,

IB, IE, IP), we see that networks are denser and both average and maximum degree are

higher. This result is overall expected as it is easier for two banks being connected through

exposure to the same portfolio of assets. Clustering is significantly higher while average

shortest path is lower for indirect networks as there are more links. Assortativity is much

less negative suggesting that less-connected banks are connected not only to more-connected

banks but also to each other. IB network is somewhat special, it consists of a fully complete
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Figure 3: Network Characteristics

Notes:On the x-axis there are different methods. True exposures: DL, DB, DE, DP - are direct loans, bonds, equity, and fund shares, IL, IB, IE,
IP - are indirect loans, bonds, equity, and fund shares, market-based networks: DY - DDLY volatility network, CS - partial correlation network
based on equity return, HSS - tail risk network, CDS - credit risk network, PD - default probability network. Each circle represents
characteristics for each time period, March 2014 - September 2019.

subnetwork and a number of isolated nodes. For this reason, we see, for example, that its

average shortest path is strictly equal to one meaning that any bank can be reached from

any other bank using only one link. This structure of the IB network can be explained by

two things: first, smaller banks may not invest in bonds, and thus they are disconnected

from the IB network. Second, a relatively limited number of firms issuing bonds leads to a

high probability that any two banks investing in bonds are exposed to the same set of firms.

This is in turn reflected in connection of all banks to each via common bond portfolios.

Finally, regards the market-based networks, DDLY and CS networks as expected are the

two extremes: DDLY is a complete network with all banks being connected to each other,

while CS is an extremely sparse network. Interestingly, despite such low density, CS network

is still quite well connected within its giant connected component (a subset of network where

isolated nodes are excluded) with average shortest path below 2.5 for most of the periods. A

significant difference of CS relatively to the other network is that its assortativity is positive

suggesting that well-connected banks are connected among each other. CS characteristics

exhibit also the highest volatility across years.
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Table 3: Network Characteristics

DL DB DE DP IL IB IE IP DY CS HSS CDS PD

Nodes
mean 54.3 54.3 54.3 54.3 54.3 54.3 54.3 54.3 54.3 54.3 54.3 17.0 54.3
median 55 55 55 55 55 55 55 55 55 55 55 17 55
sd 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 0.6 1.4

Links
mean 273 661 416 35 1644 1569 1039 96 2740 48 473 231 528
median 275 648 409 36 1712 1598 1040 94 2704 46 484 238 451
sd 25 45 24 5 204 108 84 17 132 15 55 35 248

Densities
mean 9.4 22.8 14.4 1.2 56.7 54.2 35.9 3.3 94.8 1.7 16.3 84.6 18.3
median 9.4 23.0 14.6 1.2 58.8 54.4 35.1 3.2 96.2 1.6 16.3 89.9 15.4
sd 0.6 0.9 0.6 0.2 5.5 1.5 2.5 0.6 2.9 0.5 1.5 10.8 8.6

Mean degree
mean 5.0 12.2 7.7 0.6 30.2 28.9 19.1 1.8 50.5 0.9 8.7 13.5 9.7
median 5.0 12.0 7.5 0.7 31.9 29.1 19.0 1.7 50.0 0.8 8.8 14.0 8.3
sd 0.4 0.6 0.3 0.1 3.3 1.3 1.4 0.3 1.6 0.3 0.9 1.8 4.5

Median degree
mean 3.9 11.8 2.3 0.0 34.7 39.1 20.0 0.0 51.8 0.1 8.6 13.5 10.9
median 4.0 12.0 2.0 0.0 35.5 39.5 20.5 0.0 51.5 0.0 8.8 14.0 9.3
sd 0.4 1.2 0.4 0.0 3.5 1.4 2.0 0.0 1.3 0.3 1.0 1.9 5.3

Max degree
mean 17.2 36.6 48.6 7.0 46.4 39.1 39.6 12.8 51.8 4.7 17.7 15.6 17.8
median 16.0 36.0 49.0 6.5 47.0 39.5 40.0 13.0 51.5 5.0 17.5 16.0 16.0
sd 2.8 1.3 1.7 1.9 2.8 1.4 1.9 1.5 1.3 0.9 3.0 1.1 6.3

Assortativity
mean -0.2 -0.2 -0.5 -0.2 -0.2 -0.1 -0.3 -0.3 NA 0.4 -0.1 -0.1 0.0
median -0.2 -0.2 -0.5 -0.2 -0.2 -0.1 -0.3 -0.3 NA 0.5 -0.1 -0.1 0.0
sd 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 NA 0.4 0.0 0.0 0.1

Clustering
mean 19.8 13.2 6.1 1.5 78.2 73.8 65.6 19.6 97.4 17.3 6.1 85.1 29.4
median 19.4 13.0 6.1 1.5 78.5 74.0 65.5 19.7 98.1 17.4 6.2 89.1 27.1
sd 1.9 0.6 0.6 0.6 2.1 1.0 2.8 2.2 1.5 5.9 0.6 9.8 7.1

Core size
mean 18.0 30.0 21.5 2.0 51.5 50.0 37.5 5.5 52.0 6.0 8.5 12.0 11.0
median 18.0 30.0 21.5 2.0 52.0 50.0 37.5 5.5 52.0 6.0 8.5 12.0 11.0
sd 2.5 3.5 1.5 1.0 3.5 2.0 2.5 1.5 3.0 1.0 1.5 2.0 2.5

Core error
mean 25.1 15.1 17.5 59.7 4.7 0.0 1.4 14.7 0.0 55.0 62.8 8.5 53.8
median 24.0 14.8 17.6 59.3 4.9 0.0 1.3 14.4 0.0 57.9 62.8 6.5 57.1
sd 2.4 0.8 1.1 8.2 1.0 0.0 0.5 3.6 0.0 12.7 2.6 5.8 11.9

Average shortest path
mean 2.1 1.7 2.0 1.9 1.3 1.0 1.4 1.8 1.0 1.5 2.1 1.2 2.0
median 2.1 1.7 2.0 1.8 1.3 1.0 1.4 1.8 1.0 1.3 2.0 1.1 1.9
sd 0.1 0.0 0.0 0.4 0.0 0.0 0.0 0.1 0.0 0.5 0.1 0.1 0.4

Diameter
mean 4.9 3.2 4.4 4.2 2.7 1.9 2.7 3.2 1.0 3.2 4.3 2.0 4.0
median 5.0 3.0 4.0 4.0 3.0 2.0 3.0 3.0 1.0 3.0 4.0 2.0 4.0
sd 0.8 0.4 0.5 1.1 0.4 0.3 0.5 0.5 0.0 1.4 0.6 0.0 1.1

Notes: D - direct exposure, I - indirect or common portfolio exposure, L - loans, B - bonds, E - equity, P - equities non securities or fund shares.
DDLY stands for Demirer et al. (2018) approach, CS stands for Craig, Sald́ıas (2016) approach, HSS stands for Hautsch et al. (2014), Hautsch
et al. (2015) approach, CDS stands for Brownlees et al. (2020) approach, PD stands for Duan et al. (2012) approach.

Interestingly, tail risk (HSS) and default probability (PD) networks have density, aver-

age and maximum degrees, and average shortest path very similar to direct balance sheet

networks. Both network types have slightly negative and in certain periods even positive

assortativity which resemble them more to indirect balance sheet networks. Default proba-

bility network exhibits quite strong variability of characteristics over time.

CDS networks are similar to other balance-sheet networks with the difference that these

networks are almost complete. This is largely because these networks consist of only 18

banks (vs 62 for other networks). For this reason, clustering parameter is very large while

average shortest path is very low.

The characteristics we present are computed for a sub-sample of the banking system

as we do not have data either balance sheet or market data for all banks in the system.

This may have an impact on aggregate network characteristics, though this is a general

issue in the empirical network literature. Crain (2018) provides a summary of some of the

philosophical problems in inference about network characteristics in a population from a

sample of network nodes.
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Table 4: Correlations between edges of Balance Sheet Networks

IL IB IE IP DL DB DE DP

IL 1.00
IB 0.19 1.00
IE 0.11 0.08 1.00
IP 0.06 0.10 0.02 1.00

DL 0.05 0.19 0.08 0.00 1.00
DB 0.07 0.35 0.00 0.03 0.13 1.00
DE 0.02 0.04 0.02 -0.01 0.08 0.09 1.00
DP 0.03 0.12 0.03 0.02 0.56 0.06 0.01 1.00

Notes: D - direct exposure, I - indirect or common portfolio exposure, L - loans, B - bonds, E - equity, P - equities non-securities or fund shares.

4.2.2 Edge Comparison

The graphical diagrams of the market-based networks and aggregate network statistics for

all networks presented above are somewhat indicative of structural similarities. However,

to understand how well market-based networks match individual edges of balance-sheet

networks, a more formal analysis is needed. In this section we start with the descriptive

evidence, that we will further investigate using econometric analysis in the next section.

Edge comparison refers to understanding if two compared networks have the same present

and the same absent links. To do this analysis, network literature proposes several ap-

proaches. We start with a simple correlation of weighted networks and then proceed with

computing four main similarity measures, namely Jaccard, Hamming, Accuracy and Cosine

measures.

We start by looking at the correlations between the types of balance sheet networks,

between the types of market-based networks and between the balance-sheet and market-

based networks. Table 4 shows that the balance sheet exposures are often correlated across

types. Particularly, direct loan portfolios are highly correlated with direct ownership, and

this makes sense as banks can lend more easily to companies they (partially) own. Direct

loans are also correlated with direct indirect bond portfolios. And overall all correlations

are positive. While this makes little sense in terms of portfolio diversification, it makes a

lot of sense in terms of monitoring efforts of counterparties that can be used across balance

sheet items. Indeed, as explained in Acharya et al. (2006) and explored most recently in

Bednarek et al. (2022), monitoring efforts of companies in one asset class can be used to
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Table 5: Correlations between MBN Edges

CS CS1 CS2 CS3 DDLY DDLY1 DDLY2 DDLY3 HSS CDS PD

CS 1.00
CS1 0.97 1.00
CS2 0.94 0.97 1.00
CS3 0.74 0.74 0.72 1.00
DDLY 0.32 0.35 0.36 0.25 1.00
DDLY1 0.30 0.34 0.35 0.24 0.64 1.00
DDLY2 0.35 0.38 0.39 0.27 0.71 0.76 1.00
DDLY3 0.32 0.35 0.36 0.25 1.00 0.64 0.71 1.00
HSS 0.17 0.18 0.18 0.14 0.14 0.12 0.15 0.14 1.00
CDS 0.30 0.31 0.34 0.25 0.28 0.26 0.26 0.28 0.14 1.00
PD 0.19 0.21 0.22 0.20 0.23 0.20 0.22 0.23 0.13 0.31 1.00

Notes: CS stands for Craig, Sald́ıas (2016) approach, CS1 - CS TH1 F1, CS2 - CS TH25 F1, CS3 - CS TH25 F3 are alternative thresholds and
factors CS networks. DDLY is the baseline Demirer et al. (2018) approach, DDLY1 is DDLY return 4factors scaled the 4 factor-scaled return
version of Demirer et al. (2018) in the text, DDLY2 is DDLY vol 4factors scaled the 4 factor-scaled volatility version of Demirer et al. (2018) in
the text, DDLY3 is DDLY thr that is original DDLY with a threshold of Demirer et al. (2018), HSS is the Hautsch et al. (2014), Hautsch et al.
(2015) approach, CDS is the network from the Brownlees et al. (2020) approach, PD is the Duan et al. (2012) approach.

increase the exposure in other assets.

Table 5 shows edge correlations between various types of market-based networks. We

notice several patterns. First, all variations of DDLY and CS are correlated with each other.

This is an indication that in regressions, we should use only one specification of the measure.

Second, correlations between other measures are relatively high but not too much to pose

a collinearity problem in the estimation. Third, we observe that equity and credit-based

measures tend to correlate more within the classes. The only exception is HSS which has

relatively low correlation with all other networks.

In Table 6, we observe the following patterns of edge correlations between balance-sheet

and market-based networks. First, all market-based networks have the largest correlations

with the network based on common bond holdings, or IB. These correlations are of the

order of 0.23-0.32 except for the HSS network which has a correlation of 0.11 but it also has

much smaller correlations overall. Such importance of common bond holdings makes sense

as banks have a large share of bonds in their portfolio, and information on bond holdings

is publicly available and thus can be assessed by market participants. CDS network stands

out as it has equally high correlations with both common bond portfolios and cross-holdings

of bonds. This is not surprising as CDS contracts often use non-repayment of bonds as a

trigger of a credit event.
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Table 6: Simple Edge Correlations

CS DDLY HSS CDS PD
IL 0.06 0.14 0.07 0.18 0.13
IB 0.25 0.32 0.11 0.28 0.23
IE 0.09 0.15 0.03 0.03 0.07
IP 0.02 0.01 0.01 0.03 0.05

DL -0.04 0.04 0.01 0.03 0.02
DB 0.07 0.15 0.09 0.28 0.13
DE 0.02 0.07 -0.01 0.10 0.03
DP -0.02 0.00 0.01 0.01 0.03

Notes: Balance Sheets: D - direct exposure, I - indirect or common portfolio exposure, L - loans, B - bonds, E - equity, P - equities
non-securities or fund shares. Market Base Measures: CS stands for Craig, Sald́ıas (2016) network, DDLY is the baseline Demirer et al. (2018)
network, HSS stands for Hautsch et al. (2014), Hautsch et al. (2015) network, CDS is the network from the Brownlees et al. (2020) network, PD
is the Duan et al. (2012) network.

Direct bond holdings is the next category of assets largely correlated with all market-

based networks. Again holdings of bonds are relatively well-known to the market. One

may expect that banks’ direct exposures should be more important for the markets since

if a bank defaults its counterparty will be affected directly. On the other hand, banks’

direct exposures represent a significantly smaller share of banks’ total assets. Indirect and

direct bond portfolio represent about 12.5% and 0.11% of total assets of a median bank with

maximum share reaching 31% and 4.8% respectively. However, we can see how importance

of an asset in banks’ portfolio is affected by market knowledge. Indirect loans represents a

lion share of banks’ portfolios: 17.5% for a median bank with the maximum being up to

59%. But this information is largely proprietary, and thus markets may have only imperfect

guess of these exposures. This is reflected in common loan portfolio being captured by

market-based networks only as good as direct bond holdings despite its overall size.

Common bond and loan portfolios as well as direct bond holdings are the most correlated

with networks reflecting credit risk, i.e., HSS, CDS, and PD. While debt assets are also

captured by return-based networks, CS and DDLY are the only market-based measures that

are strongly associated with common equity portfolio. The fact that return-based networks

are correlated with debt assets is expected as market equity prices potentially reflect overall

return of banks’ business model or portfolio which consists to a large extent of loans and

bonds. However, it is interesting to see that return-based networks also capture exposure in

indirect equity holdings as they represent a relatively small share of banks’ portfolio, 0.26%

for a median bank and 6.2% maximum.
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Figure 4: Adjacency Matrix Comparisons

Notes:Balance Sheets: D - direct exposure, I - indirect or common portfolio exposure, L - loans, B - bonds, E - equity, P - equities non-securities
or fund shares. Market Base Measures: DDLY stands for Demirer et al. (2018) approach, CS stands for Craig, Sald́ıas (2016) approach, HSS
stands for Hautsch et al. (2014), Hautsch et al. (2015) approach, CDS stands for Brownlees et al. (2020) approach, PD stands for Duan et al.
(2012) approach.

The remaining assets, direct trading and non-trading equity holdings as well as common

portfolio of non-trading equity, have rather low correlation with market-based networks.

This is probably due to low share of these assets on banks’ balance sheets and little infor-

mation available to the markets.

Next, we compare networks using similarity measures, namely Jaccard, Hamming, Ac-

curacy and Cosine. The first three measures account only for presence or absence of links

and not link weight. The Jaccard measure of similarity is defined as an intersection of

common links divided by the union of the links present in both networks. The Hamming

similarity sums up all links that are different in the two compared networks. The Accuracy

similarity computes percentage of true-positive and true-negative links in the market-based

network relative to the balance-sheet network. Finally, cosine similarity computes an angle

between two vectors thus also taking into account weights of edges. It is a close analog to

a correlation measure.

Figure 4 presents results of this comparison. Each sub-figure depicts each combination of

the market-based versus balance-sheet-based networks. Hamming and Accuracy measures

are only for adjacency matrices (0 - 1 networks), thus the complete network of DDLY is

irrelevant.

Several patterns emerge from Figure 4. First, the Hamming and Accuracy measures of
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similarity are essentially the inverse of each other. This is indeed true, as Hamming measures

the number of links which differ in two compared networks while Accuracy measures the

share of correctly identified links over a total number of links in one of the networks. All

market-based networks perform similarly with respect to these two measures: the accuracy

is relatively high when comparing market-based networks with direct exposure networks and

indirect participation networks. The accuracy turns out to be somewhat lower for direct

bonds as well as indirect loan and bond networks. We know that balance-sheet networks

are very sparse with direct networks being extremely sparse. Thus, these two charts confirm

that Hamming and Accuracy measures perform better for more sparse networks. In this

sense, they are not very useful as we are more interested in seeing market-based networks

correctly matching non-zero connections.

The Jaccard and Cosine similarity measures give a different set of results. Interestingly,

both measures show results somewhat similar to each other and similar to the correlations

in Table 6. For both measures, almost all market-based networks reflect stronger exposures

to a combination of direct bonds and equity, as well indirect bonds, equity and loans. The

cosine measure emphasizes the market-based networks’ similarity to the IB, IL and IE net-

works, with a secondary emphasis on the DB and DE networks. The DDLY network does

better than the other in the indirect bonds, direct bonds and direct loans networks. The

network based on default probabilities captures pretty well connections in all indirect net-

works and to a lesser extend in direct bonds networks. According to the Jaccard similarity,

the HSS network does well in most of the categories of balance-sheet networks, in contrast

to the simple edge correlations where it performed universally more poorly than the other

market-based networks. CDS picks up the same categories according to both measures but

it performs better according to the Jaccard measure than the Cosine. Interestingly, the CS

network captures well the IL and IE networks when considering weighted network in the

cosine measure but its performance is very poor for the Jaccard measure. Another obser-

vation concerns direct loans network: while market-based networks were poorly correlated

with direct loans in Table 6, according to similarity measures they show much better perfor-

mance, particularly, for DDLY using Cosine measure and almost all networks using Jaccard

measure.
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Figure 5: Adjacency Matrix Comparisons. Most Volatile over Time

Notes:Balance Sheets: D - direct exposure, I - indirect or common portfolio exposure, L - loans, B - bonds, E - equity, P - equities non-securities
or fund shares. Market Base Measures: DDLY stands for Demirer et al. (2018) approach, CS stands for Craig, Sald́ıas (2016) approach, HSS
stands for Hautsch et al. (2014), Hautsch et al. (2015) approach, CDS stands for Brownlees et al. (2020) approach, PD stands for Duan et al.
(2012) approach.

Figure 4 presents comparison for one randomly chosen date. In Figure 5, we plot the

evolution of similarity measures for a subset of pairs of market-based and balance sheet

networks. For better visibility, we focus on four pairs with the greatest variation over time

instead of plotting forty pairs (five market-based networks times eight balance-sheet net-

works). Hamming and Accuracy measures show significant stability both in the performance

ranking and absolute values since these measures are explained by a large amount of zeros

in the matrices. Jaccard measure shows higher variation over time but ordering remains

stable. These three relatively stable measures capture adjacency matrix, i.e. presence or

absence of links. When we look at the Cosine measure that aims to assess weights in two

compared networks, we observe significantly higher variation. The two pairs CDS-DL and

CS-DB demonstrate particularly extreme volatility over time with performance switching

from the best to the worst. For example, CDS network captures relatively well DL network

at the beginning of the period and not that well at the end of the period. This variation

potentially indicates that CDS and CS networks will not explain well DL and DB networks

respectively in the regressions.

In summary, no single measure is ideal for assessing the similarity between two networks.
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Various measures highlight different aspects, leading to contrasting results. Some market-

based networks perform better according to some measures yet fall short when judged by

others. Despite this, we note several consistent patterns across these measures. Most market-

based networks effectively mirror indirect bonds, indirect loans, and direct bonds, while

showing less agreement with indirect and direct equity, and direct loans. These observations

serve as a basis for our forthcoming econometric analysis, the results of which are detailed

in the next section.

5 Results of econometrics analysis

In our analysis we are interested in answering the following two questions. How an increase

in intensity of balance-sheet exposures by one standard deviation affects the probability of

observing a link in a market-based network? And how an increase in intensity of balance-

sheet exposures by one standard deviation affects the intensity of an observed link in a

market-based network?

The first question refers to an existence of a link, or an extensive margin, and we assess

the relationship using a logit model in Section 5.1. The second question refers to a size of a

link, or an intensive margin, and the relationship is estimated using a Poisson regression in

Section 5.2.

Both questions we can also ask the other way around. For example, how an increase in

market perception of a connection between two banks is related to: a probability of observing

a link or a size of the observed link in the balance sheet exposures? In all cases, we talk

about correlation and not causality, but intuitively we can think about these questions as

follows. Let’s look at the probability of observing a link in the direction from balance sheet

exposure to market perception. First, we expect that when a balance sheet connection via

direct asset holdings or exposure to common assets increases or intensifies, markets react by

re-evaluating the available information and either create a new link or re-assess the existing

one. This is a direct relationship in the direction of causality, though we do not claim

causality. Second, to know if markets can predict a link in a balance-sheet network we run

the opposite regression. We expect that higher intensity of a connection in market-based
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networks is related to an observation of a link in a balance-sheet network. In a linear model

with one variable the coefficients would be the same in both regressions, while in logit and

Poisson regressions with multiple variables this is not the case. Thus, in subsections on

extensive and intensive margins we run regressions in both directions.

Our baseline specification is a dyadic panel data model, which is widely used in trade

and social network analysis. We estimate each BSN as a function of the MBN as follows

BSNijt = αi + αj + αt + αit + αjt +
5∑

m=1

βmMBNm
ijt + controlsijt + εijt (7)

and a corresponding equation of each MBN as a function of the BSN edges is estimated

as follows:

MBNijt = αi + αj + αt + αit + αjt +
4∑

k=1

ψkD
k
ijt +

4∑
k=1

ηkI
k
ijt + controlsijt + εijt (8)

where a unit of observation MBNijt is a network edge from bank i to bank j at time t

calculated using a specific market-based approach, and BSNijt is an edge from bank i to

bank j at time t in a specific balance-sheet network. An edge is either directed or undirected

depending on the network. Depending on the regression model used - logit or Poisson - an

edge is either a binary variable, or continuous variable reflecting link weight. The parameters

αi, αj, αt are source bank, target bank, time fixed effects respectively. αit is a source bank

time fixed effect that captures the change in source bank i’s overall exposure in quarter t.

Finally, αjt is a similar fixed effect for target bank j.23

In the first equation, our variable of interest is βm where m varies from 1 to 5 reflecting

the five market-based networks. In the second equation we separate the BSNijt components

into direct Dk
ijt and indirect Ikijt true exposures. k varies from 1 to 4, and covers four types

of exposure: direct and indirect loans, bonds, equity, and equity non-security or fund shares.

The coefficients of our interest are ψk and ηk. We expect a positive sign for all coefficients of

23We consider quarterly data, and the sample period for our regressions is 2013q3 - 2019q4, so we are
limited in the number of observations in terms of the time dimension. Taking into account this limitation
we are not able to include bank pair fixed effects, αij and αji, which control for the effect of time-invariant
bank-pair unobserved characteristics on the link between bank i and bank j. On the other hand, some
studies have shown that banks tend to have long-lasting relationships, and we expect certain stability in
bank pair relationships.
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interest as higher intensity of a link in one network should be reflected by a higher intensity

of the same link in the other network.

We cluster standard errors at the dyad level. Consider two pairs of edges, for example,

BSNij and BSNik at time t. Both edges share a common bank i and so co-vary. Failing

to account for this type of dependence will result in too small standard errors. Thus, we

cluster standard errors along both dimensions of the pair to take into account the correlation

pattern of the dyadic regression.

We consider the following control variables. Log total assets (TA) captures the size

effect. Common equity tier ratio (CET1 ratio) is a leverage ratio to take into account

the health of the bank. Risk-weighted assets intensity (RWAI) captures riskiness, while

Return on average equity (ROAE) reflects banks profitability. We include in the regression

the product of source and target controls, in other words pair-wise controls. All control

variables are lagged by one period.

In the next section we discuss results of the analysis at the extensive margin, explaining

the presence of a link in the network with the logit model. And then, we explore the results

of the intensive margin, explaining the intensity of the link in the dependent variable using

a Poisson model.

5.1 Extensive margin results (Logit regression)

In this section, we discuss results of the regression of an extensive margin analysis using a

logit model. We start with Equation 7 which estimates how well market-based networks can

guess balance-sheet networks.

The dependent variable BSN01
ijt is a dummy, it is equal to one if there is a link, and zero

otherwise. The right-hand side variables are market-based networks MBNijt: DDLY, HSS,

CS and PD.

Three comments are worth making. First, we exclude the CDS variable as CDS networks

contain only 18 banks. Including CDS edges in the regression severely limits the sample size

and thus the predictive power of the explanatory variables.

Second, DDLY and HSS networks are directed, while CS and PD networks are undirected.

We choose to use an undirected version of the BSN to be conservative in our estimations.
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The difference between undirected and directed networks is an increased number of links in

the network as for all existent links from node A to B we create links from B to A. As CS

and PD variables already include links both from A to B and from B to A, the estimation

of these two approaches is not affected in the case of the undirected dependent variable.

On the other hand, DDLY and HSS are punished by the use of the undirected dependent

variable as now they have to “predict” more links than otherwise. This contrasts to the case

of the directed dependent variable, when the estimation of the directed DDLY and HSS is

not affected, but undirected CS and PD benefit as they can guess either of the existing link,

from A to B or from B to A.

Third, the IB network consists of a complete subnetwork and some standalone nodes.

Thus, we cannot estimate the IB regression with fixed effects, as fixed effects will explain

all the variation. To address this issue, we take a cumulative sum of ranked weights in

the network, retain only weights up to the 95th percentile, and replace all values below the

threshold of the 95th percentile with zeros.

Next, we run a logit using Equation 8 where the dependent variable, MBN01
ijt, is a

dummy equal to 1 for an existing link with positive weight in a market-based network, and

0 otherwise (no link or a link with negative weight). As in Equation 7, the MBN are used in

their original version, namely, directed (DDLY and HSS) and undirected (CS and PD), while

the right-hand side BSN are adjusted to match the direction of the MBN on the left-hand

side. Regarding the DDLY, we cannot estimate the regression as it is a complete network.

Thus, we use the same approach as for the IB network and replace all values below the

threshold of 95th percentile with zeros.

The results are presented in Tables 7 and 8 below. One can observe that essentially all the

coefficients in Table 7 are positive and significant. The positive sign reflects our expectations

that an increase in a link weight in the MBN is associated with higher probability of having a

link in the BSN. The significance of the coefficients suggests that the market-based networks

do a good job in “predicting” existence of a link in various balance-sheet networks.

Table 8 reports the coefficients for the opposite exercise and shows how a change in

the intensity of a link in a balance-sheet network affects the probability of observing a

link in a market-based network. Most of significant coefficients have the expected positive
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sign. The two balance-sheet variables captured by almost all market-based networks are

common portfolio exposures of loans and bonds. Equity price-based networks such as CS

and DDLY reflect also direct and indirect equity exposures, while credit-risk-based networks

(HSS and PD) are the only ones associated with direct bonds exposures. Not surprisingly,

the coefficients in front of the direct loans either have low significance or have an unexpected

negative sign as the market fails to reflect highly proprietary data on interbank lending.

One can wonder why all the coefficients in Table 7 are significant while the coefficients in

the opposite regression in Table 8 are not. When we aim to explain the market-based mea-

sures by the balance-sheet variables, we observe a differential effect, namely, the sensitivity

of the market-based measures vary depending on the balance-sheet networks. However, re-

gressing a balance-sheet variable on the market-based networks shows all the market-based

networks equally important in explaining the balance-sheet variable. The main reason be-

hind this effect is quite important correlation between various balance sheet networks. For

example, as shown in Table 4, direct loans are correlated with common bond portfolios at

19%, with direct bonds at 13%, direct and indirect equity at 8%. When we regress only

direct loans on market-based networks, the latter may explain not links specific to the direct

loans but rather similarity of direct loan network to other balance-sheet networks. The fact

that banks are exposed to the same counterparties via different assets is also demonstrated

by Elliott et al. (2021). The authors show, for example, that German commercial banks that

lend to each other bilaterally also tend to have similar portfolios of loans to non-financial

firms. Furthermore, the authors argue that a network structure with banks being intercon-

nected in different networks arises in the equilibrium as banks benefit together from the

same assets in good times while protected by limited liabilities and possibility of a bail-out

if failing together in bad times. Jackson, Pernoud (2019) also find an incentive of banks

to correlate their assets, but for various reason, that is ’risk matching’. Their more genral

result can be extended to allow to relax limited liability.

In a linear regression model, the reported coefficient is a marginal effect, however, this

is not the case in the logit model. For this reason, we compute marginal effects (ME) of an

independent variable on the probability of observing a link.24 This will allow us to compare

24We compute a marginal effect in a logit regression as follows. The derivative with respect to any
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sensitivities of various variables, to provide an economic interpretation to the results, and

it may also shed light on the differential effects of market-based networks on balance-sheet

variables in Table 7 with all significant coefficients.

The ME allows the following interpretation: one standard deviation increase in an inde-

pendent variable is associated with ME percent increase in the probability of having a link

in the network defined by the dependent variable. Tables 9 and 10 demonstrate the marginal

effects for the results of logit specifications presented in Tables 7 and 8 respectively. ME

are comparable across all independent variables, as all the variables are z-score normalized.

Unlike in Table 7 with all coefficients being significant and non-comparable, Table 9 allows

us to differentiate between the effects of various regressors and regressions. One can ob-

serve that indeed marginal effects vary from about 1% to 16%, and certain market-based

networks perform better for some balance-sheet networks but not for others. Each ME can

be read as follows: for example, when the intensity of links in the PD network increases by

one standard deviation the probability of the link in DL network increases by around 4.7%.

Thanks to the normalization of the variables and computation of marginal effects at density,

we can compare numbers both across rows and columns. When we look at ME within the

same column, we compare which market-based network has the largest effect on a specific

balance-sheet network. In this case, we can observe that PD performs best in guessing links

in the common bond holdings network (IB) with the estimated marginal effect of 18.15%

and IP at around 1%, CS - in the IL, DB, and IE networks with the ME being equal to

10.64%, 12.13% and 20.34% respectively, while DDLY outperforms other market measures

in the DE and DL networks with the ME at 11.89% and 5.65% respectively, and DP at

around 2%. As for HSS, it has relatively small ME in all regressions with the largest ME in

the IB regression. On the other hand, when comparing the performance of the same market

measures in different regressions, we notice that all market measures have the second or

independent variable can be solved using the chain and quotient rules. Since the logit regressions are non-
linear, the effect of an increase in an independent variable is modified because the marginal effect is now a
function of the values of the x’s themselves Xβ. We can thus find the marginal effect of an independent
variable on the probability of having a link in the network defined by the dependent variable as follows:
∂P (link)
∂xk

= exp(−Xβ)
(1+exp(−Xβ))2 βk. To interpret the results, we compute the marginal effect at density (ME further

on), as it allows accounting for difference in sparsity of the dependent variable networks and making ME
comparable across specifications. Thus, we choose λ so that the P (link) is set at the density of the network

on the left-hand side in the regression model, that is λ = − ln
(

1
dn
− 1
)

. Then the marginal effect at density

is just βi(1− dn)dn, where, dn is the density of the network defined by the dependent variable.
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Table 7: Logit model. The probability of an existence of a link in the balance sheet networks given a
change in intensity of a link in the market-based network

Dependent Variable: DL IL DB IB DE IE DP IP

Variables
DDLY 0.4343∗∗∗ 0.1673∗∗ 0.5017∗∗∗ 0.2686∗∗∗ 0.6741∗∗∗ 0.5101∗∗∗ 0.6445∗∗∗ 0.2457

(0.0977) (0.0756) (0.1108) (0.0772) (0.0908) (0.1326) (0.1110) (0.1526)
CS 0.1151∗∗ 0.4312∗∗∗ 0.5575∗∗∗ 0.3404∗∗∗ 0.2116∗∗∗ 0.8845∗∗∗ -0.0574 0.0893∗∗

(0.0551) (0.0649) (0.1132) (0.0854) (0.0577) (0.1270) (0.0651) (0.0361)
HSS 0.0383 0.0989∗ 0.1491∗∗∗ 0.2157∗∗ 0.1649∗∗∗ 0.1323∗∗ 0.1972∗∗∗ 0.2111∗∗

(0.0290) (0.0507) (0.0416) (0.0840) (0.0372) (0.0596) (0.0481) (0.1076)
PD 0.3381∗∗∗ 0.3146∗∗∗ 0.3772∗∗∗ 0.8240∗∗∗ 0.3348∗∗∗ 0.2362∗∗∗ 0.3337∗∗∗ 0.2941∗∗∗

(0.0432) (0.0643) (0.0631) (0.2805) (0.0633) (0.0781) (0.0853) (0.0979)

Controls Yes Yes Yes Yes Yes Yes Yes Yes

Fixed-effects
source Yes Yes Yes Yes Yes Yes Yes Yes
target Yes Yes Yes Yes Yes Yes Yes Yes
source-date Yes Yes Yes Yes Yes Yes Yes Yes
target-date Yes Yes Yes Yes Yes Yes Yes Yes
date Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 18,038 18,316 17,085 13,058 21,108 15,302 4,929 3,218
Squared Correlation 0.45726 0.63960 0.60983 0.60205 0.64848 0.77223 0.26825 0.53750
Pseudo R2 0.40133 0.60516 0.54333 0.55962 0.59059 0.73711 0.27712 0.47408
BIC 25,153.9 21,793.8 23,486.6 17,719.2 25,297.4 17,087.3 9,206.4 6,934.8

Notes: Clustered (source & target) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. In the names of dependent
variables: D - direct exposure, I - indirect or common portfolio exposure, L - loans, B - bonds, E - equity, P - equities non-securities or fund
shares. The IB network consists of a complete subnetwork and some isolated nodes, and we cannot estimate the IB regression with fixed effects,
as fixed effects will explain all the variation. For this reason we apply a 95th percentile threshold to the IB network, namely, we make the 5%
smallest links equal to zero. Independent variables: DDLY - volatility-based network, CS - return-based partial correlation network, HSS -
tail-risk based network, PD - forward-looking default probability-based network. Pair-wise controls: TA - total assets, CET1 - common equity
tier ratio, RWAI - risk-weighted assets intensity, ROAE - return on average equity.

third-largest marginal effects for the DB network. HSS and PD have the largest ME for the

IB network, while DDLY and CS - in the DE and IE regressions respectively.

In Table 10 marginal effects calculated for Table 8 vary from 0.2% to 29%. As we have

seen in Table 8, all The largest marginal effects across all specifications (except for PD) has

the IB network. In PD regression the largest marginal effect has an IL network. Consistently

with our previous logic this current table has similar message. If we do not take into account

the marginal effect of IB, the second largest marginal effect for CS network is DE 2.38%,

while for DDLY is IE 5.52%. While second largest effect for CDS is DB and equal to 18.98%

and for HSS it is IL equal to 1.45%. These results suggest that market-based networks

constructed using equity prices (returns and volatility) both reflect and predict better the

direct equity and indirect equity balance-sheet networks. While the opposite holds for the

market-based networks that capture credit risk, tail risk, and default probabilities: that is

they do a better job in reflecting and predicting direct and indirect bond holdings.
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Table 8: Logit model. The probability of an existence of a link in the market-based networks given a
change in intensity of a link in the balance sheet network

Dependent Variable: DDLY thr

Variables
DL 0.0113

(0.0141)
IL 0.1233∗∗∗

(0.0401)
DB -0.0150

(0.0326)
IB 0.3159∗∗∗

(0.0505)
DE 0.0623∗∗∗

(0.0209)
IE 0.3481∗∗∗

(0.1105)
DP 0.0682

(0.0651)
IP 0.3116

(0.1978)

Controls Yes

Fixed-effects
source Yes
target Yes
source-date Yes
target-date Yes
date Yes

Fit statistics
Observations 26,268
Squared Correlation 0.55252
Pseudo R2 0.50049
BIC 32,258.0

CS

-0.9803∗∗∗

(0.3762)
0.9271∗∗∗

(0.2864)
-0.2175
(0.4280)
7.174∗∗∗

(1.690)
1.607∗∗∗

(0.4767)
0.2770∗∗

(0.1313)
0.4876∗∗∗

(0.1041)
-0.0215
(0.1062)

Yes

Yes
Yes
Yes
Yes
Yes

2,586
0.77184
0.72212
5,419.9

HSS

-0.0287
(0.0209)
0.1320∗∗∗

(0.0249)
0.0425

(0.0309)
0.3193∗∗∗

(0.0622)
0.0180

(0.0188)
0.0314

(0.0265)
0.0134

(0.0092)
0.0208∗∗

(0.0082)

Yes

Yes
Yes
Yes
Yes
Yes

26,136
0.12396
0.12979
36,168.0

PD

0.0590∗

(0.0333)
0.3475∗∗∗

(0.0805)
0.0900∗∗

(0.0391)
0.0835

(0.1473)
0.0123

(0.0173)
0.2198∗∗∗

(0.0652)
0.0156

(0.0118)
-0.0317
(0.0202)

Yes

Yes
Yes
Yes
Yes
Yes

22,378
0.13968
0.14002
33,746.1

CDS

-0.0720∗

(0.0411)
-0.0049
(0.1285)
0.7609∗∗∗

(0.2246)
1.165∗∗∗

(0.2523)
-0.0196
(0.0240)
-0.0233
(0.0544)
0.0645∗∗∗

(0.0097)
0.0148

(0.0214)

Yes

Yes
Yes
Yes
Yes
Yes

3,076
0.20476
0.16268
7,942.6

Notes: Clustered (source & target) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. In the names of independent
variables: D - direct exposure, I - indirect or common portfolio exposure, L - loans, B - bonds, E - equity, P - equities non-securities or fund
shares. Dependent variables: CS - return-based partial correlation network, HSS - tail-risk based network, DDLY - original DDLY network with
a threshold, PD - forward-looking default probability-based network, CDS - credit risk based network. The DDLY network is complete, and we
cannot estimate the regression with all 1 in the dependent variable. For this reason we apply a 95th percentile threshold to the DDLY network,
namely, we make the 5% smallest links equal to zero. Pair-wise controls: TA - total assets, CET1 - common equity tier ratio, RWAI -
risk-weighted assets intensity, ROAE - return on average equity.
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Table 9: Marginal effects for Table 7

DL IL DB IB DE IE DP IP
DDLY 5.65%∗∗∗ 4.13%∗∗ 10.92%∗∗∗ 5.92%∗∗∗ 11.89%∗∗∗ 11.73%∗∗∗ 1.49%∗∗∗ 0.80%
CS 1.50%∗∗ 10.64%∗∗∗ 12.13%∗∗∗ 7.50%∗∗∗ 3.73%∗∗∗ 20.34%∗∗∗ -0.13% 0.29%∗∗

HSS 0.50% 2.44%∗ 3.25%∗∗∗ 4.75%∗∗ 2.91%∗∗∗ 3.04%∗∗ 0.46%∗∗∗ 0.69%∗∗

PD 4.40%∗∗∗ 7.76%∗∗∗ 8.21%∗∗∗ 18.15%∗∗∗ 5.91%∗∗∗ 5.43%∗∗∗ 0.77%∗∗∗ 0.96%∗∗∗

Notes: Marginal effects at density are calculated using the following formula: βi(1− dn)dn, where, βi is the coefficient in front of the
independent variable, dn is a density of the dependent variable network specified at the top of each column. Signif. Codes: ***: 0.01, **: 0.05,
*: 0.1. In the names of dependent variables: D - direct exposure, I - indirect or common portfolio exposure, L - loans, B - bonds, E - equity, P -
equities non-securities or fund shares. Independent variables: DDLY - volatility-based network, CS - return-based partial correlation network,
HSS - tail-risk based network, PD - forward-looking default probability-based network.

Table 10: Marginal Effects for Table 8

DDLY CS HSS PD CDS
DL 0.24% -1.45%∗∗∗ -0.31% 0.68%∗ -1.80%∗

IL 2.66%∗∗∗ 1.38%∗∗∗ 1.45%∗∗∗ 4.01%∗∗∗ -0.12%
DB -0.32% -0.32% 0.47% 1.04%∗∗ 18.98%∗∗∗

IB 6.83%∗∗∗ 10.64%∗∗∗ 3.50%∗∗∗ 0.96% 29.05%∗∗∗

DE 1.35%∗∗∗ 2.38%∗∗∗ 0.20% 0.14% -0.49%
IE 7.52%∗∗∗ 0.41%∗∗ 0.34% 2.54%∗∗∗ -0.58%
DP 1.47% 0.72%∗∗∗ 0.15% 0.18% 1.61%∗∗∗

IP 6.73% -0.03% 0.23%∗∗ -0.37% 0.37%

Notes: Marginal effects at density are calculated using the following formula: βi(1− dn)dn, where, βi is the coefficient in front of the
independent variable, dn is the density of dependent variable network specified at the top of each column. Signif. Codes: ***: 0.01, **: 0.05, *:
0.1. In the names of independent variables: D - direct exposure, I - indirect or common portfolio exposure, L - loans, B - bonds, E - equity, P -
equities non-securities or fund shares. Dependent variables: CS - return-based partial correlation network, HSS - tail-risk based network, DDLY
- original DDLY network with threshold, PD - forward-looking default probability-based network, CDS - credit risk-based network.

5.2 Intensive margin results (Poisson regression)

In this section, we estimate equations 7 and 8 using the Poisson regression model. This

time, our dependent variables are weights of edges in either balance-sheet or market-based

networks. As most of the considered networks except DDLY and CDS are sparse, our data

contains many zeros reflecting absence of connections, thus we choose Poisson specification

to address this issue and we estimate our model using a Poisson likelihood following Silva,

Tenreyro (2006), Silva, Tenreyro (2011).25 26

Tables 11 and 12 report the coefficients βm, ψk and ηk from equations 7 and 8.

We start with the regression of the balance-sheet links on the main market-based mea-

sures. Due to high correlation among variations of the CS and DDLY, we do not include

25We are grateful to Yoto Yotov and Laurent Berge for suggesting this. We use R package “fixest” for
estimation purposes. For the details on theory used to obtain the fixed-effects estimation see Bergé, others
(2018).

26The results, using other estimation methods, such as Negative Binomial (to take into account over-
dispersion) and OLS are available upon request.
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them in the regression. As in the case of the logit regression, we omit CDS network due to

the low number of nodes in the network.

Table 11 shows results for the prediction of the size of balance-sheet links by market-

based measures. Unlike in the logit regression (Table 7), we see variation in significance of

predictions. Credit networks (IL, DB and IB) are significantly correlated with all market-

based links. DDLY and, to a lesser extent CS, additionally guess well equity networks (DE,

IE and DP, IP). HSS and PD are the only market measures that also capture direct loan

exposures.

Now we turn to the results of the regression of market-based measures on balance-sheet

exposures in Table 12. This table contains two measures of DDLY: standard DDLY and

DDLY threshold. The coefficients of both measures are almost identical in size and signifi-

cance, indicating robustness of our results to such variation. Again, we use DDLY threshold

to be able to compute marginal effects, as the original DDLY measure has density equal to

1. Overall, main messages of the estimation in Table 12 are qualitatively similar both to

the results in the logit regression (Table 8) and the results of the other Poisson regression

(Table 11). Indeed, loan portfolios (IL) are captured by all market-based networks. Di-

rect bonds are correlated with CS and PD, while indirect bonds with DDLY and HSS. As

previously, DDLY and CS additionally correlate with equity exposures. However, DL is no

more captured by any market measure. This is consistent with our previous discussion that

direct loans are mostly proprietary information and cannot be well-identified by banks. As

for CDS, it mostly confirms the results in the logit regression, capturing well DB and IB.

Similar to the logit model, Poisson is a non-linear model, and reported coefficients have

a different interpretation than a linear regression model. Thus, we compute marginal effects

for the estimators of the Poisson regression to compare coefficients among each other but

also to provide some economic interpretation to the estimators.27

In terms of the marginal effects, in Table 13, we see that DDLY has the largest effects

on equity exposures at 9.78% and 6.77%, and relatively large effects on all other significant

27It can be shown that the marginal effect on the probability of having a link between the dyadic pair

is ∂P (link)
∂xk

= exp(−λ)γk in case of Poisson regression. We assume for simplicity that λ = Xγ. We choose

λ so that the P (link) is set at the density of the dependent network. This would set λ̄ = − ln(1 − dn),
where dn is the density of the network on the left-hand side. This would mean that the marginal effect of
xk evaluated at λ̄ is (1− dn)γk.
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estimators. For CS, HSS and PD, the top effects are on DB and IL, and interestingly, PD

has also a strong effect on IE.

Regards marginal effects for the regression of market-based networks on balance-sheet

exposures (Table 14), IB dominates all other balance-sheet variables for all market measures,

except PD. For PD, it is the IL which has the strongest effect of 8.89%. CDS stands out

with particularly large effects of 29% and 8.9% for IB and DB respectively.

When interpreting marginal effects at density of the network in Poisson model, one

should keep in mind, that the effect is stronger for a sparser network, because estimated

coefficients are multiplied by (1− dn). Indeed, if a network is sparse, even a small change in

an independent variable could have a large effect on the probability of a link existing. This

results in larger coefficients and marginal effects in the regression with the sparse network.

This is not necessarily true in logit model as coefficients are multiplied by dn(1− dn).

To conclude this section, we draw the following messages that are consistent for all four

types of regressions: logit and Poisson, direct and inverse. First, all market measures are

more or less associated with common holdings of loans and bonds. Furthermore, equity

market measures are more correlated with equity holdings, direct or indirect; while credit-

risk measures capture better direct credit risk exposures via loans and bonds. Second,

overall, results for the direct loans are not very robust and reflect the difficulty of markets

to price such information. Third, regarding the economic significance of our results, the

original measure of DDLY is mostly closely related to direct equity holdings, consistently

across both logit and Poisson “prediction” regression28. According to the the marginal effect

for the logit regression, CS, HSS, and PD measures are good at capturing the existence of a

link in the indirect equity, indirect bonds, and direct bonds respectively. However, they do

not overall do a good job in predicting the magnitude or intensity of a link in balance sheet

networks. As for the economic relevance of our results in “reflection” regression, regardless

of whether we use logit or Poisson specifications, CDS is the most associated with direct and

indirect bond holdings, while PD best reflects indirect bonds. As for DDLY, CS and HSS,

they all reflect well both the existence and the magnitude of a link in common portfolios of

28Although we remind the reader that original measure of DDLY is a volatility-based network, which
might partially reflect common factors and co-movement. We further address this issue in the robustness
section 6.1.
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bonds and loans, although with relatively smaller marginal effects.

Table 11: Extensive margin: Market Networks as Predictors of Balance Sheet exposure

Dependent
Variable: DL IL DB IB DE IE DP IP

Variables
DDLY 0.0143 0.0935∗∗∗ 0.0802∗∗ 0.0271 0.1268∗∗∗ 0.1056∗∗∗ 0.0372∗∗ 0.0432∗∗∗

(0.0116) (0.0165) (0.0386) (0.0309) (0.0407) (0.0237) (0.0171) (0.0150)
CS -0.0123 0.0389∗∗∗ 0.0341∗∗∗ 0.0348∗∗∗ 0.0175∗ 0.0011 -0.0066 0.0132∗

(0.0166) (0.0111) (0.0057) (0.0095) (0.0097) (0.0145) (0.0166) (0.0077)
HSS 0.0084∗ 0.0256∗∗∗ 0.0323∗∗∗ 0.0112∗∗∗ 0.0019 0.0058 0.0111 0.0066

(0.0044) (0.0058) (0.0082) (0.0025) (0.0065) (0.0066) (0.0087) (0.0075)
PD 0.0156∗∗ 0.0748∗∗∗ 0.0314∗∗∗ 0.0352∗∗∗ 0.0002 0.0642∗∗∗ 0.0181∗∗∗ 0.0135

(0.0062) (0.0143) (0.0106) (0.0063) (0.0060) (0.0118) (0.0061) (0.0149)

Controls Yes Yes Yes Yes Yes Yes Yes Yes

Fixed-effects
source Yes Yes Yes Yes Yes Yes Yes Yes
target Yes Yes Yes Yes Yes Yes Yes Yes
date Yes Yes Yes Yes Yes Yes Yes Yes
source-date Yes Yes Yes Yes Yes Yes Yes Yes
target-date Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 28,233 28,233 28,233 28,233 28,233 28,233 28,233 28,233
Squared Correlation 0.16890 0.40851 0.23506 0.79889 0.15585 0.54192 0.15485 0.18489
Pseudo R2 0.04364 0.08224 0.08414 0.16047 0.05222 0.12429 0.04221 0.04823
BIC 77,336.4 74,931.5 79,504.8 72,833.2 79,399.6 76,657.2 77,887.5 77,476.4

Notes: Two-way (source & target) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. Fixed-effects:
source,target,date,source-date,target-date for all regressions. In the names of dependent variables: D - direct exposure, I - indirect or common
portfolio exposure, L - loans, B - bonds, E - equity, P - equities non-securities or fund shares. Independent variables: DDLY - original DDLY,
volatility-based network, CS -return-based partial correlation network, HSS - tail-risk based network, PD - forward-looking default
probability-based network. Pair-wise controls: TA - total assets, CET1 - common equity tier ratio, RWAI - risk-weighted assets intensity, ROAE
- return on average equity.
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Table 12: Poisson: Variables Comparison + controls

Dependent Variable: DDLY DDLY thr CS HSS PD CDS

Variables
DL 0.0009 0.0009 -0.0037 -0.0040 0.0064 0.0011

(0.0035) (0.0033) (0.0047) (0.0031) (0.0086) (0.0192)
IL 0.0324∗∗∗ 0.0316∗∗∗ 0.0402∗∗∗ 0.0325∗∗∗ 0.1026∗∗∗ 0.0563

(0.0092) (0.0092) (0.0137) (0.0050) (0.0210) (0.0358)
DB 0.0059 0.0055 0.0279∗∗∗ 0.0107 0.0266∗∗ 0.1874∗∗∗

(0.0073) (0.0074) (0.0101) (0.0074) (0.0116) (0.0216)
IB 0.0932∗∗∗ 0.0905∗∗∗ 0.0364 0.0665∗∗∗ 0.0399 0.6124∗∗∗

(0.0143) (0.0139) (0.0396) (0.0121) (0.0410) (0.1170)
DE 0.0090∗∗ 0.0087∗∗ 0.0186∗∗ 0.0045 0.0041 0.0110

(0.0038) (0.0037) (0.0091) (0.0037) (0.0028) (0.0092)
IE 0.0091 0.0087 0.0276∗ 0.0084 0.0433∗∗∗ -0.0226∗∗∗

(0.0063) (0.0061) (0.0156) (0.0058) (0.0166) (0.0069)
DP -0.0015∗ -0.0014∗ 0.0068 0.0042∗∗ 0.0008 0.0079∗∗

(0.0009) (0.0008) (0.0056) (0.0019) (0.0042) (0.0040)
IP -0.0002 -0.0001 0.0021 0.0053∗∗∗ -0.0021 0.0130∗∗

(0.0005) (0.0004) (0.0026) (0.0010) (0.0063) (0.0064)

Controls: Yes Yes Yes Yes Yes Yes

Fixed-effects
source Yes Yes Yes Yes Yes Yes
target Yes Yes Yes Yes Yes Yes
date Yes Yes Yes Yes Yes Yes
source-date Yes Yes Yes Yes Yes Yes
target-date Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 28,271 28,271 28,225 27,511 22,952 3,118
Squared Correlation 0.67118 0.67273 0.33737 0.19484 0.13110 0.52788
Pseudo R2 0.13949 0.14027 0.03778 0.02423 0.02636 0.09915
BIC 87,875.3 87,958.6 87,446.1 87,443.8 76,501.9 12,609.2

Notes: Clustered (source & target) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. In the names of independent
variables: D - direct exposure, I - indirect or common portfolio exposure, L - loans, B - bonds, E - equity, P - equities non-securities or fund
shares. Dependent variables: DDLY - original volatility-based network, DDLY thr - original DDLY network with a threshold, CS - return-based
partial correlation network, HSS - tail-risk based network, PD - forward-looking default probability-based network, CDS - credit risk based
network. The DDLY network is complete, and we cannot estimate the regression with all 1 in the dependent variable. For this reason we apply a
95th percentile threshold to the DDLY network, namely, we make the 5% smallest links equal to zero. Pair-wise controls: TA - total assets,
CET1 - common equity tier ratio, RWAI - risk-weighted assets intensity, ROAE - return on average equity.
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Table 13: Marginal effects for Table 11

DL IL DB IB DE IE DP IP
DDLY 1.21% 4.14%∗∗∗ 5.45%∗∗ 1.28% 9.78%∗∗∗ 6.77%∗∗∗ 3.63%∗∗ 4.18%∗∗∗

CS -1.04% 1.72%∗∗∗ 2.32%∗∗∗ 1.65%∗∗∗ 1.35%∗ 0.07% -0.65% 1.28%∗

HSS 0.71%∗ 1.13%∗∗∗ 2.19%∗∗∗ 0.53%∗∗∗ 0.15% 0.37% 1.09% 0.63%
PD 1.32%∗∗ 3.31%∗∗∗ 2.13%∗∗∗ 1.67%∗∗∗ 0.01% 4.12%∗∗∗ 1.77%∗∗∗ 1.31%

Notes: Marginal effects at density are calculated using the following formula: βi(1− dn), where, βi is the coefficient in front of the independent
variable, dn is a density of the dependent variable network specified at the top of each column. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. In the
names of dependent variables: D - direct exposure, I - indirect or common portfolio exposure, L - loans, B - bonds, E - equity, P - equities
non-securities or fund shares. Independent variables: DDLY - volatility-based network, CS - return-based partial correlation network, HSS -
tail-risk based network, PD - forward-looking default probability-based network.

Table 14: Marginal Effects for Table 12

DDLY thr CS HSS PD CDS
DL 0.03% -0.37% -0.35% 0.55% 0.05%
IL 1.00%∗∗∗ 3.96%∗∗∗ 2.85%∗∗∗ 8.89%∗∗∗ 2.68%
DB 0.17% 2.75%∗∗∗ 0.94% 2.31%∗∗ 8.91%∗∗∗

IB 2.86%∗∗∗ 3.59% 5.81%∗∗∗ 3.46% 29.13%∗∗∗

DE 0.28%∗∗ 1.83%∗∗ 0.39% 0.36% 0.53%
IE 0.27% 2.71%∗ 0.73% 3.76%∗∗∗ -1.07%∗∗∗

DP -0.05%∗ 0.67% 0.37%∗∗ 0.07% 0.38%∗∗

IP 0.00% 0.21% 0.46%∗∗∗ -0.18% 0.62%∗∗

Notes: Marginal effects at density are calculated using the following formula: βi(1− dn), where, βi is the coefficient in front of the independent
variable, dn is the density of dependent variable network specified at the top of each column. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. In the
names of independent variables: D - direct exposure, I - indirect or common portfolio exposure, L - loans, B - bonds, E - equity, P - equities
non-securities or fund shares. Dependent variables: DDLY thr - DDLY network with threshold, CS - return-based partial correlation network,
HSS - tail-risk based network, PD - forward-looking default probability-based network, CDS - credit risk-based network.

6 Robustness

In this section, we test if our baseline results hold under different specifications. First, we

propose alternative measures of DDLY and see how they perform relative to the original

DDLY. Second, we test sensitivity of CS network towards change in an estimation parameter

and assess its performance in capturing balance-sheet exposures. Finally, we dig deeper into

the problem of multiple zeros in our networks and assess if our results are biased by capturing

mostly zero-zero links.

6.1 Alternative DDLY measures.

We start by looking at the estimation of alternative DDLY measures presented in section

3.1. Table 15 reports the results for the specification of equation 8, where the dependent

variable is a DDLY network. DDLY variable is a directed link, so all explanatory variables

are also taken as directed. The first column is an original DDLY, volatility based network,
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not scaled; the second is DDLY that is defactored using demeaning in a volatility based

network; the third is DDLY defactored using demeaning, volatility based network, but not

scaled; the fourth is DDLY defactored using 1 EU stock market factor, volatility based net-

work; the fifth and the sixth is respectively return-based or volatility-based DDLY network

that is defactored using 4 factors (stock market factor, banking sector factor, option-based

volatilities both for stock market and banking sector); finally, the last, seventh, column is

exactly like the first column but with a threshold.

Before moving to the interpretation of the results, let us note that columns (1) and (7)

have almost identical results both in terms of size and significance. Thus from now on, we

do not comment on column (7).

One big result emerges immediately after looking at Table 15. All DDLY measures are

strongly significantly and positively associated with common portfolios of loans and bonds.

In other words, our results suggest that two banks having similar loan or bond portfolios are

perceived by the markets as more connected both in terms of higher volatility connectedness

and higher return connectedness. This is expected as loan and bond portfolio makes a major

share of banks’ balance sheet and to a large extent defines banks’ profitability which in its

turn affects banks’ equity returns and return volatility.

The only DDLY network for which this result does not hold is the non-scaled defactored

DDLY in Column (3). Here we expect the results to be less robust since as explained in 3.6,

z-score normalization of variables has a significant effect. Indeed, two banks may look similar

due to strong common factors, but if one eliminates these factors, either by taking cross-

sectional mean or by defactoring, banks become very different. To take this into account

one needs to scale or normalize defactored variables.

Now looking at the results in more detail, we can note that the correlation in indirect

loans and bonds cannot be explained by common factors, as comparing column (1) with

column (6) of Table 15 one can see that coefficients are similar in terms of the magnitude

and stay significant, even when the dependent variable is constructed using a market factor,

banking sector factor, and option-based volatility both for market and for the banking sector.

However, the same cannot be said about direct equity exposures as once co-movement with

common factors is eliminated direct equity becomes insignificant.
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Direct loans are not significant for columns (1)-(4), and become significant once we

eliminate common factors (columns (5) and (6)). This result is similar to Abbassi et al.

(2017), who find positive and significant association between direct interbank lending and a

CDS-based market network for the German sample of banks.

Finally, it is worth mentioning that once controlling for common factors, DDLY networks

based on equity return - column (5) - and volatility - column (6) - provide very similar results.

Most of the coefficients have similar magnitude and significance in columns (5) and (6).

Table 15: Poisson: Baseline DDLY + controls with clustered errors at dyad level

Dependent Variable: DDLY
Model: (1) (2) (3) (4) (5) (6) (7)

Variables
DL 0.0009 -0.0031 -0.0020 0.0039 0.0074∗ 0.0068∗∗ 0.0009

(0.0034) (0.0051) (0.0031) (0.0055) (0.0040) (0.0031) (0.0033)
IL 0.0324∗∗∗ 0.0241∗∗∗ 0.0025 0.0322∗∗∗ 0.0233∗∗∗ 0.0262∗∗∗ 0.0316∗∗∗

(0.0092) (0.0082) (0.0036) (0.0074) (0.0080) (0.0083) (0.0092)
DB 0.0059 0.0005 -0.0019 0.0015 0.0032 0.0027 0.0055

(0.0073) (0.0086) (0.0037) (0.0071) (0.0090) (0.0062) (0.0074)
IB 0.0932∗∗∗ 0.1424∗∗∗ 0.0261∗∗∗ 0.1316∗∗∗ 0.1081∗∗∗ 0.1112∗∗∗ 0.0905∗∗∗

(0.0143) (0.0271) (0.0083) (0.0221) (0.0190) (0.0185) (0.0139)
DE 0.0090∗∗ 0.0097 -0.0002 0.0081 0.0068 0.0070 0.0087∗∗

(0.0038) (0.0073) (0.0015) (0.0051) (0.0053) (0.0044) (0.0037)
IE 0.0091 0.0123 0.0059∗ 0.0080 0.0082 0.0066 0.0087

(0.0063) (0.0118) (0.0034) (0.0115) (0.0088) (0.0086) (0.0061)
DP -0.0015∗ -0.0057∗ -0.0002 -0.0031 -0.0043∗ -0.0035∗∗ -0.0014∗

(0.0009) (0.0035) (0.0009) (0.0022) (0.0022) (0.0016) (0.0008)
IP -0.0002 -0.0029∗∗∗ -0.0055∗∗∗ −1.9× 10−5 0.0018∗∗∗ 0.0025∗∗∗ -0.0001

(0.0005) (0.0005) (0.0011) (0.0008) (0.0005) (0.0009) (0.0004)

Controls Yes Yes Yes Yes Yes Yes Yes

Fixed-effects
source Yes Yes Yes Yes Yes Yes Yes
target Yes Yes Yes Yes Yes Yes Yes
date Yes Yes Yes Yes Yes Yes Yes
source-date Yes Yes Yes Yes Yes Yes Yes
target-date Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 28,271 28,271 28,271 28,271 28,271 28,271 28,271
Squared Correlation 0.67118 0.34832 0.30411 0.41879 0.45751 0.52335 0.67273
Pseudo R2 0.13949 0.07525 0.05043 0.08138 0.09440 0.10086 0.14027
BIC 87,875.3 90,829.4 87,801.4 90,545.5 90,409.1 89,227.4 87,958.6

Notes: Two-way (source & target) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. Fixed-effects: source, target, date,
source-date,target-date for all regressions. In the names of independent variables: D - direct exposure, I - indirect or common portfolio exposure,
L - loans, B - bonds, E - equity, P - equities non-securities or fund shares. Dependent variables: Model (1) - original DDLY, volatility-based
network, not scaled; Model (2) - DDLY defactored using demeaning, volatility-based network; Model (3) - DDLY defactored using demeaning,
volatility-based network, not scaled; Model (4) - DDLY defactored using 1 EU stock market factor, volatility based network; Model (5) - DDLY
defactored using 4 factors, return based network; Model (6) - DDLY defactored using 4 factors, volatility based network; Model (7) - original
DDLY volatility-based network with the threshold. Pair-wise controls: TA - total assets, CET1 - common equity tier ratio, RWAI - risk-weighted
assets intensity, ROAE - return on average equity.
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6.2 Alternative CS measures

In this section, we look how alternative specifications of the CS measure affect our baseline

results. As explained in Section 3.2, we compute CS baseline measure by removing one

common factor and using a five percent threshold in Holm-Bonferroni thresholding method.

As a sensitivity check, we consider the following combinations: one-factor and a 10% thresh-

old (CS TH10 F1 of CS1), one-factor and a 25% threshold (CS TH25 F1 or CS2), and

three-factors with a 25% threshold (CS TH25 F3 or CS3). Table 16 reports the results

for all CS measures. The key messages are the following: CS measures capture particularly

well common loan portfolio and direct bond exposures as well direct and indirect equity

connections. The results are robust across all specifications with positive and significant

coefficients of a similar magnitude. The only exception is DB that loses its significance in

CS3 - Column (4).

6.3 Selection 00 and Selection 11

The density of both market-based and balance-based networks is very low, except for DDLY

and CDS, thus our data contains many zeros both for dependent and independent variables.

Poisson specification is meant to deal with this issue. However, as a robustness check, we

conduct an alternative specification to ascertain that significance of our results is not driven

by cases when we have zeros on both sides of the equation. To address the issue, we first

remove all NA values in the variables. Next, we create dummy cs00, that takes into account

so-called zero-zero cases, that is we set cs00 to zero when a dependent variable is zero and

all independent variables (the links in true exposure networks) are zero as well. We set

cs00 equal to one otherwise. That being said we would like to estimate a model, when

either dependent variable or at least one of the independent variables are non-zeros. But

this might generate a potential selection problem. In order to address this issue we apply

Heckman correction model. First, we run a probit model where we regress dummy cs00 on

the pairwise characteristics which we used as controls in our baseline models: total assets,

capital ratio CET1, risk-weighted assets and return on equity. Second, we calculate Inverse

Mills ratio (IMR). Third, we run standard Poisson regression using the R package “fixest”,
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Table 16: Poisson: CS sensitivity to threshold

Dependent Variable: CS CS1 CS2 CS3

Variables
DL -0.0037 -0.0030 -0.0033 -0.0050

(0.0047) (0.0050) (0.0051) (0.0050)
IL 0.0402∗∗∗ 0.0469∗∗∗ 0.0494∗∗∗ 0.0232∗∗∗

(0.0137) (0.0117) (0.0110) (0.0039)
DB 0.0279∗∗∗ 0.0297∗∗∗ 0.0345∗∗∗ 0.0153

(0.0101) (0.0108) (0.0119) (0.0094)
IB 0.0364 0.0402 0.0415 0.0341

(0.0396) (0.0438) (0.0467) (0.0347)
DE 0.0186∗∗ 0.0193∗∗ 0.0206∗∗ 0.0273∗∗

(0.0091) (0.0096) (0.0095) (0.0123)
IE 0.0276∗ 0.0281∗ 0.0273∗ 0.0298∗∗

(0.0156) (0.0162) (0.0161) (0.0151)
DP 0.0068 0.0062 0.0057 0.0035

(0.0056) (0.0056) (0.0057) (0.0081)
IP 0.0021 0.0017 0.0014 0.0018

(0.0026) (0.0027) (0.0027) (0.0031)

Controls Yes Yes Yes Yes

Fixed-effects
source Yes Yes Yes Yes
target Yes Yes Yes Yes
date Yes Yes Yes Yes
source-date Yes Yes Yes Yes
target-date Yes Yes Yes Yes

Fit statistics
Observations 28,225 28,225 28,225 28,225
Squared Correlation 0.33737 0.33516 0.33545 0.13831
Pseudo R2 0.03778 0.03896 0.04077 0.02532
BIC 87,446.1 87,641.7 87,881.5 89,714.2

Notes: Two-way (source & target) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. Fixed-effects: source, target, date,
source-date,target-date for all regressions. In the names of independent variables: D - direct exposure, I - indirect or common portfolio exposure,
L - loans, B - bonds, E - equity, P - equities non-securities or fund shares. Dependent variables: CS - original CS measure, CS1 - CS TH1 F1 is
10% threshold with 1 factor, CS2 - CS TH25 F1 is 25% threshold with 1 factor, CS3 - CS TH25 F3 is 25% threshold with 3 factors. Pair-wise
controls: TA - total assets, CET1 - common equity tier ratio, RWAI - risk-weighted assets intensity, ROAE - return on average equity.
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but we augment our baseline set of regressors with an additional variable IMR. We use

Poisson in the second stage because even though we eliminate zero-zero cases, still we do

have a lot of zeros either on the left-hand side or on the right-hand side of the equation.

This problem arises in all the market-based networks except for DDLY network, as it is a

complete network.

Table 17 reports the results for the second stage of selection model for CS, HSS, PD,

and CDS networks. As can be seen from the table, the results remain robust and consistent

with the previous findings.

Next, we conduct even stricter robustness check. We construct a dummy cs11 setting it

to one only when dependent and at least one of the independent variables is non-zero, and

we set it to zero otherwise. This exercise potentially might create even more severe selection

problem, that is why we use a Heckman correction model again. Results are reported

in Table 18. As this exercise is overly restrictive and with significantly lower number of

observations the results should be taken with the grain of salt. Nevertheless, the results for

the HSS and CDS networks are confirmed. The PD retains only one positive and significant

coefficient, IL. Interestingly, this corresponds to the variable that also exhibited the largest

marginal effects in both baseline specifications, logit and Poisson. As for the CS network,

the restriction reduces even further the number of observations (just 2% of observations

from the baseline model) , this can potentially explain several unexpected negative signs in

front of IL, IB and IE. However, the robust result for direct equity - DE - further underlines

its importance.

Overall, we conclude that our results are not driven by zero connections. If one looks

at interconnections both in terms of direct holdings and common portfolios as a source of

credit risk, then one could expect the best approaches based on credit risk information. This

is indeed confirmed byIL surviving the strictest robustness test for the CDS, PD, and HSS

measures. DB and IB remain strongly robust for the CDS network as well. On the other

hand, for measure based on returns such as CS, the only surviving variable with different

robustness checks is DE - direct equity.
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Table 17: Selection 00: CS, HSS, PD, CDS

Dependent Variable: CS

Variables
DL -273.4∗∗∗

(91.73)
IL 8.545∗∗

(4.019)
DB 167.8

(401.2)
IB 25.58∗∗∗

(7.441)
DE 5,031.8∗∗∗

(619.0)
IE 65.92

(68.85)
DP 1,273.4∗∗∗

(417.2)
IP 570.0∗∗∗

(101.5)
IMR1 12.48∗∗∗

(3.057)

Fixed-effects
source Yes
target Yes
source-date Yes
target-date Yes
date Yes

Fit statistics
Observations 4,856
Squared Correlation 0.66165
Pseudo R2 0.39205
BIC 7,468.5

HSS

-14.29
(10.02)
1.508∗∗

(0.6770)
89.35∗∗

(41.53)
7.738∗∗∗

(1.716)
181.3

(113.9)
44.56∗∗

(19.40)
266.1∗∗∗

(52.67)
122.4∗∗∗

(35.65)
1.501∗∗∗

(0.3573)

Yes
Yes
Yes
Yes
Yes

29,429
0.25032
0.06692
18,588.6

PD

6.917
(18.58)
6.183∗∗∗

(2.008)
258.5∗∗

(129.8)
3.139

(3.913)
237.5

(188.8)
138.0∗∗∗

(42.70)
287.3

(238.7)
95.65

(174.2)
1.598∗∗∗

(0.5719)

Yes
Yes
Yes
Yes
Yes

25,202
0.13493
0.10416
21,360.3

CDS

10.32
(38.31)
6.693∗∗

(3.239)
1,172.9∗∗∗

(240.9)
7.077∗∗∗

(2.474)
234.4

(233.1)
-53.87
(34.37)
322.8∗∗

(135.9)
327.9∗

(183.4)
118.2∗∗∗

(31.07)

Yes
Yes
Yes
Yes
Yes

4,156
0.44957
0.12784
6,891.2

Notes: Two-way (source & target) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. Fixed-effects: source, target, date,
source-date,target-date for all regressions. In the names of independent variables: D - direct exposure, I - indirect or common portfolio exposure,
L - loans, B - bonds, E - equity, P - equities non-securities or fund shares, IMR - inverse Mills ratio. Dependent variables: CS - original CS
measure, HSS - tail-risk based network, PD - forward-looking default probability-based network, CDS - credit risk based network. Pair-wise
controls: TA - total assets, CET1 - common equity tier ratio, RWAI - risk-weighted assets intensity, ROAE - return on average equity.
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Table 18: Selection 11: CS, HSS, PD, CDS

Dependent Variable: CS

Variables
DL 8.532

(11.25)
IL -1.374∗∗∗

(0.3165)
DB -19.81

(34.17)
IB -2.964∗∗∗

(0.4498)
DE 521.5∗∗∗

(25.88)
IE -1.355

(8.591)
DP 130.1

(91.08)
IP 157.5∗∗∗

(25.90)
IMR1 -0.5664

(0.3985)

Fixed-effects
source Yes
target Yes
source-date Yes
target-date Yes
date Yes

Fit statistics
Observations 562
Squared Correlation 0.98576
Pseudo R2 0.02156
BIC 5,323.6

HSS

0.1800
(7.959)

0.9459∗∗∗

(0.2238)
5.243

(16.55)
1.499∗∗∗

(0.4060)
112.4∗∗

(52.35)
11.14∗∗

(4.449)
146.9∗∗∗

(15.03)
13.11

(25.74)
6.251

(4.327)

Yes
Yes
Yes
Yes
Yes

4,585
0.70488
0.04054
14,340.6

PD

-27.48∗∗∗

(9.597)
3.079∗∗∗

(1.181)
91.69

(60.60)
1.584

(1.283)
86.51

(237.4)
31.08

(19.23)
25.59

(154.9)
161.6∗

(96.26)
-1.164
(1.937)

Yes
Yes
Yes
Yes
Yes

4,635
0.39325
0.06784
15,946.1

CDS

-34.23
(29.22)
7.217∗∗∗

(1.695)
897.6∗∗∗

(132.9)
5.167∗∗∗

(1.764)
443.1∗∗

(212.2)
-57.53∗∗∗

(1.103)
180.8

(154.6)
146.6

(90.46)
7.079∗∗∗

(1.480)

Yes
Yes
Yes
Yes
Yes

2,178
0.59877
0.09534
6,201.0

Notes: Two-way (source & target) standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. Fixed-effects: source, target, date,
source-date,target-date for all regressions. In the names of independent variables: D - direct exposure, I - indirect or common portfolio exposure,
L - loans, B - bonds, E - equity, P - equities non-securities or fund shares, IMR - inverse Mills ratio. Dependent variables: CS - original CS
measure, HSS - tail-risk based network, PD - forward-looking default probability-based network, CDS - credit risk based network. Pair-wise
controls: TA - total assets, CET1 - common equity tier ratio, RWAI - risk-weighted assets intensity, ROAE - return on average equity.
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7 Conclusion

Networks based on market data have several advantages. First, they are publicly available.

This means that new academic theories of contagion can be tested using networks simulated

from these techniques, where networks based on balance sheet data may not be available.

This lack of availability can be due to the fact that data collection is costly and time

consuming, and the data are sensitive and so subject to strict confidentiality standards.

Second, market-based reconstructed networks can provide necessary information more

timely as they can be computed on a daily basis. This is a great advantage particularly

during crisis times as regulators can get information about a change in a network following,

for example, a bank failure with a one day delay instead of three to six months after a

time-consuming process of collecting and cleaning balance sheet data.

Market-based networks however come with some severe disadvantages. First, they can

be constructed only for publicly traded banks as price information is needed for the analysis.

However, important nodes in the interbank network can be privately held so that there is no

equity prices to input into the market-based network estimation. As a result, a network may

be estimated using a non-representative sample. Further, CDS swaps are only estimated for

larger banks that make such trades worthwhile to market makers. So market-based networks

are estimated from a very special and censored sample. Second, market prices tend to be

very volatile during times of crisis. It is not always clear that these prices reflect the same

information during times of financial crisis as they do in normal times.

The third problem which is also the subject of this paper is lack of clarity regarding

what exactly market-based networks represent. Just as each of the balance-sheet networks

represent different types of exposures, with differing characteristics, the five market-based

networks represent different aspects of available public knowledge regarding the connections

between banks.

One of the networks is built upon those rare, but important banks for which there is a

CDS market. Others have links that are built from equity prices data, some networks weigh

tail events more heavily, some are based on default probabilities. Not surprisingly, each may

have their advantages.
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To investigate this question, we use a very complete balance sheet data set to construct

a large network of various exposures between European banks: four networks reflect direct

exposures between banks in loans, bonds and equity as well as non-traded equity or par-

ticipation/ownership; the other four networks reflect exposures to similar types of assets or

common portfolios in loans, bonds, equity and non-traded equity. Then we compare these

baseline networks to five networks estimated from market data. These five approaches use

either data on equity returns and volatility (Diebold, Yılmaz (2014), Demirer et al. (2018),

Craig, Sald́ıas (2016), Hautsch et al. (2014), Hautsch et al. (2015)), default probabilities

(Duan et al. (2012), Chan-Lau et al. (2016)) or CDS (Brownlees et al. (2020)). In spite

of the diversity of MBN tested in this paper, some patterns emerge for all of them. The

balance sheet links most embodied in the links of the market-based networks are indirect ex-

posures, and thus the MBN reflect essentially a common business model among banks more

easily available to public investors. Indirect bonds and indirect loans are the links most

often represented by links in the market-based networks. To a lesser extent, direct bonds

are also represented by some of the networks, particularly by those that capture credit risk.

On the other hand, networks based on equity prices (volatility and returns) reflect direct

and indirect equity exposures. Finally, direct interbank loans that often serve as an input

to the interbank contagion analysis cannot be robustly estimated by any of the market-

based networks. This is potentially due to the fact that this information is proprietary and

not available to the market, but also probably because direct interbank loans constitute a

relatively tiny share of banks’ exposures.

When we look at various market-based networks individually, they do reflect different

information in the balance sheet exposures. If one is interested at interconnections in terms

of direct holdings and common portfolios as a source of credit risk, then one might expect

the best approaches to be based on credit risk information. This is indeed confirmed that

tail risk measure and default probability measure are most associated with both direct and

common exposures of loans and bonds. They are particularly good at capturing existence of

a link, however, less good at matching link size. CDS-based networks capture mostly direct

and indirect bond holdings which is indeed expected as CDS contracts are directly linked to

bond performance. On the other hand, measures based on returns and return volatility such
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as DDLY and CS capture particularly well exposures in direct and indirect equity but also

common factors and overlapping portfolios in loans and bonds which are sources of banks’

variability in returns.

Granular data on interbank interconnections are not available to academics and most

regulatory institutions, but systemic risk and contagion analysis are widely studied using

simulated networks. Our policy implication suggests that one should be judicious in the

choice of method to construct a network from market data. Whether the use of a particular

MBN or a particular BSN is appropriate for contagion analysis depends on the particular

mechanism of financial contagion that is used. Here the youth of structural contagion

analysis hinders a final statement of which MBN or even whether any MBN would add to

the analysis. Fairly crude models of cascading defaults in a sparse network, such as proposed

by Allen, Gale (2000) or Eisenberg, Noe (2001) seem to depend on the structure of direct loan

interbank networks, where no MBN matches the edges well enough, although the sparsity

and other network quality measures can be matched. A more reduced form model of the

propagation of a common shock via firesale contagion could possibly be captured in the

credit risk models constructed via techniques that focus on tail-risk, probability defaults or

CDS prices. A much more sophisticated model of network formation leading to financial

stability problems such as proposed in Craig, Ma (2018) would seem to require a lot of

information about direct lending exposure networks, which is not embedded in any of the

MBN that we studied. As formal modeling of financial stability gets more sophisticated

and more relevant to policy counterfactual analysis, the relevance of any of the networks,

MBN or BSN, will come into a sharper focus. As is usually the case, richer data on the

links between financial institutions, both in actual exposures and in exposures inferred from

market data, will be needed to inform both the development and the interpretation of these

formal models.
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A Appendix

A.1 Variables

Table 19: Description of Macro variables for tail-risk network approach
Short name Ticker Description
STOXX Europe 600 SXXP Index The STOXX Europe 600 Index is derived from the STOXX Europe Total Market Index (TMI) and is a

subset of the STOXX Global 1800 Index. With a fixed number of 600 components, the STOXX Europe 600
Index represents large, mid and small capitalization companies across 17 countries of the European region.

VSTOXX Index V2X Index VSTOXX Index is based on a new methodology jointly developed by Deutsche Borse and Goldman Sachs
to measure volatility in the Eurozone. VSTOXX is based on the EURO STOXX 50 Index options traded on
Eurex. It measures implied volatility on options with a rolling 30 day expiry.

IBOXX Euro Sovereign QW1A Index IBOXX Euro Eurozone Sovereign Overall Total Return Index
IBOXX Euro Sub-Sovereign QW9A Index IBOXX Euro Sub-Sovereign Overall Total Return Index
IBOXX Euro Corp QW5A Index iBoxx Euro Corporates Overall Total Return Index measures the Euro denominated, corporate, investment

and investment grade bond market. The index includes bonds with minimum 1 years to maturity. Bond
type includes fixed and zero coupon, step-ups, event-driven bonds, dated and undated callable subordinated
corporate bonds, soft bullets.

Euribor 3m EUR003M Index Euribor (Euro Interbank Offered Rate) is the benchmark rate of the large euro money market. It is sponsored
by the European Money Markets Institute, which represents 2,800 banks in the fifteen Member States of the
European Union and the EMU division of ACI, the Financial Markets Association. A representative sample
of prime banks will provide daily quotes - for all quoted maturities from one week to one year - at which
interbank term deposits denominated in euro are being offered within the euro zone between prime banks.

Eurepo 3m EBFREU3M Index The European Money Markets Institute (EMMI) and the ICMA European Repo Council (ERC) announce
the discontinuation of the Eurepo index as of 2 January 2015. Therefore the benchmark rates will not update
but will still be accessible for historical purposes.

Bubill 3m GTDEM3MO Corp Bubill 3 month generic (German government bond rate)
iTraxx Europe CDS ITRX EUR CDSI GEN 5Y Corp The Markit iTraxx Europe index comprises 125 equally weighted credit default swaps on investment grade

European corporate entities, distributed among 4 sub-indices: Financials (Senior & Subordinated), Non-
Financials and HiVol. The composition of each Markit iTraxx index is determined by the Index Rules.
Markit iTraxx indices roll every 6 months in March & September.

Gold XAU BGN Curncy gold price
MSCI MXEU0RE Index The MSCI Europe/Real Estate Index is a free-float weighted equity index. It was developed with a base

value of 100 as of December 31, 1998.
DE10y GTDEM10YR Corp Germany 10y gov bond yeild
UK10y GTGBP10YR Corp UK 10 y gbond
SP10y GTESP10YR Corp Spain 10y
GR10y GTGRD10YR Corp Greece 10y
US10y USGG10YR Index US 10y
US3m GB03 Govt US 3m
FTSE Asia FAPCFNTE Index FTSE JAPAN FINANCIALS INDEX GBP TR (effective after close on March 19, 2021, before which under

legacy ICB index name was FTSE JAPAN INDEX - FINANCIALS)
FTSE US FA8000ET Index FTSE USA Index GBP
FTSE Japan FJ8770ET Index Asia FTSE index financials

A.2 Network Dynamics

In this subsection we want to see how networks change over time. For this reason, we

split the full sample in 6-month periods of daily data and construct networks for each of

period. Figures 6, 7 and 8 report DDLY volatility, DDLY defactored and CS networks for

each quarter from 2016q3 to 2017q2. We choose these periods as they cover various market

events such as the UK Brexit (June 2016), the Italian Banking Crisis (2016), and the April

2017 ECB reduction of bond purchases. For example, the networks for 2016q3 is built using

daily data from 01/04/2016 until 30/09/2016. For visual purposes, for all DDLY networks

we show only top-1% largest links. Figures 6 show that the structure of the DDLY network

changes dynamically across periods. In the upper panel networks are more segmented, and

thick links are mostly domestic, while in the lower panel cross-country links become more

present as well. As for CS networks (Figures 8), they are extremely sparse. We observe

particularly strong links among Greek banks for all periods and between Spanish banks in

2016q3. Otherwise, cross-country links seem to prevail.
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According to Demirer et al. (2018) paper, DDLY network tends to change its structure

before and after a crisis episode (they consider the Lehman collapse). More precisely banks

in different regions stood far apart, while after the episode banks in all regions become

highly interconnected indicating the spread of volatility across countries. It is interesting to

note that on figures 6b and 6c the DDLY networks tend to show a higher number of larger

probabilities of its edges (related to a higher density if zero weights were computed) and lower

number of these on figures 6a and 6d.29 This is possibly due to increased market correlation.

In fact original DDLY approach do not eliminate common factors that might drive all banks

in the same directions. Once we build the defactored DDLY volatility network, as Figure

7 displays, co-movement partly disappears, and one can clearly see some important links

(thick edges) revealed. We report DDLY defactored return network with four factors in

Figure 9. On the other hand, CS networks (Figure 8) tend to show lower density in some

periods relative to others. This might indicate lower confidence in counter-parties due to

the higher credit risk. In the interbank lending market monetary policy may have an effect

on network density as well, since banks can borrow liquidity from the central bank during a

monetary easing and reduce borrowing on the interbank market. The rest of the networks

dynamics (HSS, PD, CDS) are shown in the figures 10-12.

29Because the DDLY network is complete we refer to number of larger probabilities rather than density
which for a DDLY is always one.
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(a) 30/09/2016 (b) 31/12/2016

(c) 31/03/2017 (d) 30/06/2017

Figure 6: DDLY volatility network, some events: June 2016 - UK Brexit, Mid 2016 - Italian banking crisis,
April 2017 - ECB reduce bond purchases to 60bl euro. Node indicates bank, node size - weighted degree,
node colour - country, node location - Fruchterman-Reingold + circle pack layout by country, edges size and
colour - pairwise directional connectedness (to and from)
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(a) 30/09/2016 (b) 31/12/2016

(c) 31/03/2017 (d) 30/06/2017

Figure 7: DDLY volatility network defactored with 4 factors, some events: June 2016 - UK Brexit, Mid
2016 - Italian banking crisis, April 2017 - ECB reduce bond purchases to 60bl euro. Node indicates bank,
node size - weighted degree, node colour - country, node location - fruchterman reingold + circle pack layout
by country, edges size and colour - pairwise directional connectedness (to and from)
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(a) 30/09/2016 (b) 31/12/2016

(c) 31/03/2017 (d) 30/06/2017

Figure 8: CS network, some events: June 2016 - UK Brexit, Mid 2016 - Italian banking crisis, April 2017
- ECB reduce bond purchases to 60bl euro. Node indicates bank, node size - weighted degree, node colour
- country, node location - fruchterman reingold + circle pack layout by country, edges size and colour -
pairwise directional connectedness (to and from)
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(a) 30/09/2016 (b) 31/12/2016

(c) 31/03/2017 (d) 30/06/2017

Figure 9: DDLY return network defactored with 4 factors, some events: June 2016 - UK Brexit, Mid 2016
- Italian banking crisis, April 2017 - ECB reduce bond purchases to 60bl euro. Node indicates bank, node
size - weighted degree, node colour - country, node location - fruchterman reingold + circle pack layout by
country, edges size and colour - pairwise directional connectedness (to and from)
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(a) 30/09/2016 (b) 31/12/2016

(c) 31/03/2017 (d) 30/06/2017

Figure 10: HSS network, some events: June 2016 - UK Brexit, Mid 2016 - Italian banking crisis, April
2017 - ECB reduce bond purchases to 60bl euro. Node indicates bank, node size - weighted degree, node
colour - country, node location - fruchterman reingold + circle pack layout by country, edges size and colour
- pairwise directional connectedness (to and from)
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(a) 30/09/2016 (b) 31/12/2016

(c) 31/03/2017 (d) 30/06/2017

Figure 11: PD network, some events: June 2016 - UK Brexit, Mid 2016 - Italian banking crisis, April
2017 - ECB reduce bond purchases to 60bl euro. Node indicates bank, node size - weighted degree, node
colour - country, node location - fruchterman reingold + circle pack layout by country, edges size and colour
- pairwise directional connectedness (to and from)
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(a) 30/09/2016 (b) 31/12/2016

(c) 31/03/2017 (d) 30/06/2017

Figure 12: CDS network, some events: June 2016 - UK Brexit, Mid 2016 - Italian banking crisis, April
2017 - ECB reduce bond purchases to 60bl euro. Node indicates bank, node size - weighted degree, node
colour - country, node location - fruchterman reingold + circle pack layout by country, edges size and colour
- pairwise directional connectedness (to and from)
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A.3 Network Structure

Table 20: Description of network characteristics

Network measure Description
Density proportion of existing links over potential links (in percent)
Degree Distribution (mean,
max and median degree) distribution of degrees of all the nodes
Clustering number of triangles that is probability of banks A and B being connected if both banks A and B are connected

to C (in percent)
Modularity strength of division of a network into modules (also called groups, clusters or communities). Networks with

high modularity have dense connections between the nodes within modules but sparse connections between
nodes in different modules.

Assortativity correlation between degrees of two banks; negative assortativity says that smaller banks tend to connect to
bigger banks

Core size number of banks in the core; core is a sub-network of densely connected banks (in percent)
Score core error
Average shortest path number of links needed to connect any two banks
Diameter max number of links to connect any two banks
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A.4 List of Banks

Table 21: List of Banks

Tickers Country NAME
ABN NA Equity NL ABN AMRO BANK NV-CVA
ACA FP Equity FR CREDIT AGRICOLE SA
AGN NA Equity NL AEGON NV
AIBG ID Equity IE AIB Group plc
AKTIA FH Equity FI Aktia Pankki Oyj
ALPHA GA Equity GR ALPHA BANK
ARL GR Equity DE Aareal Bank AG
BAMI IM Equity IT BANCO BPM SOCIETA’ PER AZIONI
BARC LN Equity GB BARCLAYS BANK PLC
BBVA SM Equity ES BBVA
BCP PL Equity PT BCP
BDB IM Equity IT BANCO DI DESIO E DELLA BRIANZA - SOCIETA’ PER AZIONI
BG AV Equity AT BAWAG GROUP AG
BGN IM Equity IT BANCA GENERALI SPA
BHW PW Equity PL Bank Handlowy W Warszawie SA
BIM IM Equity IT BANCA INTERMOBILIARE DI INVESTIMENTI E GESTIONI SOCIETA’ PER AZIONI
BINCK NA Equity NL BinckBank N.V.
BIRG ID Equity IE BANK OF IRELAND
BKIA SM Equity ES BANKIA SA
BKT SM Equity ES BANKINTER, S.A.
BMED IM Equity IT BANCA MEDIOLANUM SPA
BMPS IM Equity IT BANCA MONTE DEI PASCHI DI SIENA S.P.A.
BNP FP Equity FR BNP PARIBAS
BOV MV Equity MT Bank of Valletta plc
BPE IM Equity IT BPER BANCA S.P.A.
BPSO IM Equity IT BANCA POPOLARE DI SONDRIO
CABK SM Equity ES CAIXABANK SA
CBK GR Equity DE COMMERZBANK AG
CC FP Equity FR CREDIT INDUSTRIEL ET COMMERC
CE IM Equity IT CREDITO EMILIANO S.P.A.
CRG IM Equity IT BANCA CARIGE SPA
CVAL IM Equity IT Banca Piccolo Credito Valtellinese - Societa Cooperativa
DBK GR Equity DE DEUTSCHE BANK AG
DOV IM Equity IT DOBANK SPA
EBS AV Equity AT ERSTE GROUP BANK AG
ETE GA Equity GR National Bank of Greece S.A.
EUROB GA Equity GR Eurobank Ergasias, S.A.
FIM MV Equity MT FIMBANK PLC
GLE FP Equity FR SOCIETE GENERALE
IF IM Equity IT BANCA IFIS S.P.A.
IL0A ID Equity IE permanent tsb plc.
INGA.NA.Equity NL ING Groep N.V.
ISP IM Equity IT INTESA SANPAOLO SPA
KA NA Equity NL KAS BANK N.V.
KBC BB Equity BB (Belgium) KBC GROUP NV
KN FP Equity FR NATIXIS
LBK SM Equity ES LIBERBANK S.A.
LOM MV Equity MT Lombard Bank Malta plc
MB IM Equity IT MEDIOBANCA SPA
NDA SS Equity SS (Finland) NORDEA BANK ABP
NLBR SV Equity SI (Slovenia) NOVA LJUBLJANSKA BANKA D.D. LJUBLJANA
PBB GR Equity DE Deutsche Pfandbriefbank AG
PMI IM Equity IT BANCA POPOLARE DI MILANO
POP SM Equity ES BANCO POPULAR
RBI AV Equity AT RAIFFEISEN BANK INTERNATIONAL AG
SAB SM Equity ES BANCO DE SABADELL
SAB1L LH Equity LT (Lithuania) Siauliu Bankas AB
SAN SM Equity ES BANCO SANTANDER SA
TATT GA Equity GR Attica Bank, S.A.
TPEIR GA Equity GR PIRAEUS BANK SA
TUB GR Equity DE HSBC Trinkaus & Burkhardt AG
UBI IM Equity IT UNIONE DI BANCHE ITALIANE SCPA
UCG IM Equity IT UNICREDIT SPA
UNI SM Equity ES UNICAJA BANCO, S.A.
X3622182Z.BB.Equity BB Dexia SA
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