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Abstract

We propose a Bayesian VAR model with stochastic volatility and time varying skewness

to estimate the degree of labour at risk in the euro area and in the United States. We

model the asymmetry of the shocks to changes in the unemployment rate as a function

of real activity and financial risk factors. We find that the conditional distribution of the

changes in the unemployment rate displays time-varying volatility and skewness, with peaks

coinciding with the Global Financial Crisis and the COVID-19 pandemic. We take advantage

of the multivariate nature of our parametric model to measure stagflation risk defined as the

possible joint event of large increases in the unemployment rate and large annual rates of

inflation. We find an increasing risk of stagflation for the euro area in 2022 while in the

United States stagflation risk increased earlier in 2021 and started decreasing more recently.

Notwithstanding the significantly high levels of inflation, stagflation risks have been contained

by the resilient performance of the labour market in both areas. The degree of labour at risk

is therefore important for the assessment of the inflation-unemployment trade-off.

Keywords: Unemployment risk, Stagflation risk, Labour Market, Bayesian Econometrics.

JEL Codes: C32, C53, E24, E27.
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Non-Technical Summary

The cyclical asymmetry of business cycles is a longstanding topic in the economic literature and

key to this idea is the fact that, on average, contractions in economic activity are briefer and

more violent than economic expansions. For the labour market, this implies that the number

of persons losing their jobs and becoming unemployed rises abruptly during recessions. These

persons only slowly get back into employment, leading to the unemployment rate decreasing at

a slower pace during economic expansions. More generally, the cyclical asymmetry in the labour

market can be related to the assessment of tail risks. These tail risks can account for possible

worst case scenarios that could occur in case of economic downturns. Hence, the assessment of

tail risks merits the attention of policymakers, who attempt via their policy actions to mitigate

some of the welfare losses arising in case a recession occurs and the tail risks are realised.

We tackle this topic from a quantitative perspective and estimate the degree of tail risks

in the labour market (i.e., “labour at risk”) at any given point in time both in the euro area

and in the United States. We estimate the probability of the unemployment rate suddenly and

violently increasing over time for both geographical areas. We use an augmented version of our

model to assess the joint risk of having simultaneously large increases in the unemployment rate

and large annual inflation rates, which we denote as the risk of stagflation.

We track an increasing risk of stagflation in the euro area in 2022. Our results suggest that

stagflation risk has been limited by the resilient performance of the euro area labour market.

However, our measure of labour at risk has increased during 2022 in the euro area. The risk of

stagflation in the euro area is expected to reach in December 2022 similar levels to those reached

during the Global Financial Crisis, although then it was triggered by an increase in labour at

risk as the risk of inflation was being contained. For the US, the risk of stagflation increased

during 2021 and decreased in 2022 given the robust performance of the labour market. By

contrast to the results for the euro area, the risk of stagflation in the US remained considerably

more contained than during the Global Financial Crisis.

These results motivate the use of our model to track the joint risk of stagflation in both the

euro area and in the US and its main channels. We find that labour at risk and inflation at risk

usually occur at different points in time, with a higher degree of labour at risk tending to follow

a higher inflation at risk. The timing of these risks could provide important for the assessment

of the inflation-unemployment trade-off and on the role for (and action of) monetary policy.
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1 Introduction

The cyclical asymmetry of business cycles is a longstanding topic in the economic literature,

which can be traced back to Mitchell (1927) and Keynes (1936). Key to this idea is the fact

that, on average, contractions in economic activity are briefer and more violent than economic

expansions. The asymmetry of cyclical developments is historically salient in the labour market,

being identified using both the unemployment rate (Neftçi (1984), DeLong et al. (1986), Falk

(1986)) and total employment (McKay et al. (2008), Ferraro et al. (2022)). The number of

persons losing their jobs and becoming unemployed rises abruptly during recessions. Conversely,

unemployed workers take their time to slowly get back into employment, with the unemployment

rate decreasing (or employment increasing) at a slower pace during economic expansions.

More generally, the cyclical asymmetry in the labour market can be related to the assessment

of tail risks. These tail risks can be estimated to account for the possible worst case scenarios

that could occur in case of economic downturns. Hence, the assessment of tail risks merits the

attention of policymakers, who attempt via their policy actions to mitigate some of the welfare

losses arising in case a recession occurs and the tail risks are realised.

In this paper, we tackle this topic from a quantitative perspective and estimate the degree of

tail risks in the labour market at any given point in time both in the euro area and in the United

States. To do so, we propose a fully parametric econometric model with skew-normal shocks

featuring both stochastic volatility and stochastic skewness. Our formulation is part of the

more general class of Bayesian VAR (BVAR) models with stochastic volatility and time varying

skewness discussed in Renzetti (2023). We use this model to extract out-of-sample forecasts that

allow us to monitor the degree of “labour-at-risk” and the probability of large increases in the

unemployment rate over time. We take advantage of the multivariate nature of our parametric

model to measure stagflation-risk both the euro area and the US, which we define as the possible

joint event of large increases in the unemployment rate and large annual rates of inflation.

There are several channels that could be behind the cyclical asymmetry of the labour market.

On the one hand, it is important to quantify the relationship between the cyclical developments in

real activity, which can be symmetric or not, and those in the labour market. For example, in the

standard “DMP” model with search and matching frictions (Diamond (1982), Mortensen (1982),

Pissarides (1985)), shocks to labour productivity can drive the asymmetry in the unemployment

rate via asymmetric fluctuations in the rate of job destruction (Andolfatto (1997)). This implies
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that even when the business cycles are symmetric, the economy can be faced with sudden and

large increases in unemployment during recessions. This could indicate that the Okun’s law

breaks down during recessions or is at the very least non-linear and state-dependent.

On the other hand, external frictions can simultaneously make both the real output and

the labour market to be asymmetric. For example, downward nominal wage rigidities in New

Keynesian models inhibit the necessary real wage cuts needed during recessions, thus leading to

stronger declines in vacancy posting and employment during downturns than in models featuring

symmetric wage adjustment costs (Abbritti et al. (2013)). Also, financial frictions could also

induce skewed business cycles, by magnifying the impact of a downturn while leading to a more

gradual recovery in a learning model by restricting information after the crisis (Ordoñez (2013)).1

We embed these mechanisms in our BVAR model by considering a specification at the

monthly time frequency with the changes in the unemployment rate, a variable proxying for

changes in real activity (the PMI output for the euro area and the CFNAI for the US), and

a measure proxying for changes in financial conditions (the CISS indicator for the euro area

and the NFCI for the US). By doing so, we allow the unemployment rate to move either driven

by shocks specific to the labour market, as a response to shocks to real activity in a standard

Okun’s law framework, or as a response to large variations in financial conditions.

We allow for the skewness of the shocks specific to the labour market to be state dependent,

increasing when real activity slows down and financial conditions tighten. In simple terms, the

labour market is more likely to be faced with strong adverse shocks that increase the unem-

ployment rate substantially when the economy is in a bad state of the world. This bad state

of the world can vary between a very sharp slow down of the economy or a prolonged recession

for real activity, or instead a strong tightening of financial conditions. This implies that dur-

ing bad states of the world, shocks to the monthly changes in the unemployment rate become

asymmetric and right-skewed, meaning that large increases in the unemployment rate become

more likely in these periods than in good times. By allowing the distribution of the shocks to

the unemployment rate to shift as a function of (lagged) real activity and financial risk factors,

the model is in this way able to capture possible non-linear relationships between real activity

and the labour market, and to cater for the role of financial frictions. We find also that the

1. Regarding alternative mechanisms we highlight, for example, the role of worker-level heterogeneity in models
with search and matching frictions in matching the asymmetric response of the employment rate to shocks over the
business cycle (Ferraro (2018)). We notice also that micro-level evidence points towards firms following concave
hiring rules, making them slower to hire after good shocks and quicker to fire after bad shocks (Ilut et al. (2018)).
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skewness of the shocks to the changes in the unemployment rate varies over the business cycle,

increasing and often peaking during economic downturns, and it increases (or decreases) as the

systemic financial stress conditions deteriorate (or improve).

Our paper is related to the growing strand of literature aimed at assessing and quantifying

tail risk to macroeconomic outcomes. Methodologically, this literature traditionally relies on

quantile regression based methods, such as those used by Giglio et al. (2016) and Adrian et

al. (2019). Most of the literature on the assessment of tail risks to macroeconomic outcomes

focus uniquely on output growth and inflation. Considerably less attention has been devoted to

the analysis of tail risks in the labour market. The exception is Kiley (2022), who provides an

assessment of tail risks to the US unemployment rate using quantile regressions.

We depart away from quantile regressions and propose a fully parametric model to assess tail

risks in the labour market. In this sense, our work is more closely linked to a recent strand in

the literature that proposes the usage of fully parametric models to assess and predict tail risks,

as in López-Salido et al. (2020), Plagborg-Møller et al. (2020), Carriero et al. (2020a), Carriero

et al. (2020b), Delle Monache et al. (2021), Brownlees et al. (2021), Wolf (2021), Iseringhausen

(2023), or Montes-Galdón et al. (2022), to provide some examples. Similarly to our own con-

tribution, this strand of literature argues that fully parametric models are more flexible than

quantile regression based methods, while simultaneously achieving a similar forecasting perfor-

mance.2 Moreover, we are able to further extend the model and incorporate also information

on inflation rates. We use the augmented setup to assess the joint risk of having simultaneously

large increases in the unemployment rate and large annual inflation rates.

We find a similar result in our application to the euro area or US labour markets. In

particular, our BVAR with stochastic volatility and time varying skewness displays a forecasting

performance that is at least as good as, but often superior in terms of density forecast accuracy

to other benchmarks including the quantile regression based methods from Adrian et al. (2019),

a standard BVAR model, and a BVAR model with stochastic volatility.

2. It should be noted that both Wolf (2021) and Iseringhausen (2023) employ also stochastic volatility models
with asymmetric shocks and stochastic skewness. However, both models are univariate. Our model is multivariate
and allows to jointly model the dynamic relationship between the risk factors and the target variables. As well
the multivariate nature of our model allows us to assess tail risk to multiple target variables (unemployment rate
and inflation). Relatedly, Chavleishvili et al. (2019) extend the quantile regression based methods to a quantile
VAR (QVAR) model framework. This methodology allows to model the interaction between any quantiles of the
endogenous variables. The increased flexibility comes at the cost of highly complex modelling assumptions and
estimation algorithm. For this reason, we leave the comparison of the forecasting performance and labour-at-risk
measurement between our application and a QVAR model for the labour market for future research.
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This paper is organised as follows. Section 2 describes the data we use and the main features

of the unemployment rate, which motivate our modelling choice to assess tail risks. Section 3

describes our BVAR model with stochastic volatility and time varying skewness, and our appli-

cation of this model to tackle the cyclical asymmetry in the labour market. Section 4 presents

most of our empirical results, focusing first on the in-sample assessment of the model, then on

the construction of our “labour-at-risk” measure, and finally on the out-of-sample forecasting

performance of the model. Section 5 extends our BVAR model application to assess probabilities

and risk of joint events, applied to measuring the risk of stagflation. Section 6 concludes.

2 Data description

We work with monthly data from January 1999 to September 2022 for the euro area and from

January 1971 to September 2022 for the United States. For both regions, we use the unemploy-

ment rate to account for the conditions of the labour market and two risk factors: (i) a monthly

indicator for real economic activity, which allows us to account for the reaction of the labour

market as a response to changes in economic activity; and (ii) a monthly indicator for financial

conditions, which we use to cater for the role of financial frictions in shaping movements in real

activity and in the labour market.

For the euro area, the unemployment rate is obtained from the ECB Statistical Data Ware-

house. We use the Purchasing Manager Index (PMI) Output from S&P Global to proxy for the

developments in real activity.3 This indicator tracks the assessments by corporate executives

regarding the immediate reactions of their firms to idiosyncratic events over time, and contain

in this way information on the cyclical developments in real activity. As proxy for financial

conditions we use the Composite Indicator of Systemic Stress (CISS), which is the most widely

used indicator for financial conditions in the euro area in the literature assessing tail risks to

macroeconomic outcomes (Kremer et al. (2012), Figueres et al. (2020)). This indicator aims to

track the current level of frictions, stresses and strains in the financial system. It is available at

daily frequency and we obtain a monthly series by averaging over the daily observations.

For the United States, we calculate the unemployment rate in two steps. First, we construct

3. As a robustness check, we consider instead the Eurocoin indicator provided by the Bank of Italy as a proxy
for real activity. From a qualitatively point of view our results do not change. For space considerations, we do not
report the results in the text, although they can be provided upon request. We decided to use the PMI output
as it allows for a better forecasting performance to our empirical application.
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the number of unemployed workers by obtaining the difference between the civilian labour force

and the civilian employment. We then construct the unemployment rate as the ratio between

this measure of unemployment and the civilian labour force.4 To proxy for the developments in

real economic activity, we use the National Activity Index provided by the Federal Reserve of

Chicago (CFNAI), which compares the growth rate of the economy to its historical trend. To

gauge the state of financial conditions in the US, we borrow from the growth-at-risk literature,

and use the National Financial Conditions Index (NFCI) from the Federal Reserve of Chicago,

which is comparable in scope to the CISS indicator for the euro area. Both the CFNAI and the

NFCI indicators are available at a weekly time frequency. Therefore, we aggregate the weekly

observations each month by taking their average over the month.

Figure 1 for the euro area and Figure 2 for the US show the time series of the month on

month changes in the unemployment rate together with the selected real activity and financial

conditions indicators. Both figures show that the unemployment rate is more likely to display

larger and more persistent increases when economic activity slows down considerably or financial

conditions tighten substantially, suggesting that both indicators are informative on the magni-

tude and (a)symmetry of the monthly changes in the unemployment rate over time that we

analyze in detail in the next paragraph.

[Figure 1 about here.]

[Figure 2 about here.]

2.1 Asymmetry of changes in the unemployment rate

The unemployment rate in the euro area decreased by almost four percentage points between

April 1998 and September 2022. However, the long-term decline in the unemployment rate did

not happen at a constant pace over time. The unemployment rate tends to decrease during

expansions and to increase during recessions with the speed of changes in the unemployment

rate depending on the state of the business cycles. In Table 1, we show the peak-to-trough

(downturns) and trough-to-peak (expansions) changes in the unemployment rate in the euro area.

In expansions, the unemployment rate decreased mildly by between -0.03 and -0.06 percentage

4. We obtain data on civilian employment and labor force from the FRED-MD database, provided by the
Federal Reserve Bank of St. Louis. The source code for the civilian employment is LNS12000000 (or alternatively
CE16OV), while for the civilian labour force is LNS11000000 (or alternatively CLF16OV).
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points per month. The euro area unemployment rate even increased slightly in the expansion

between the end of the Global Financial Crisis in 2009 Q2 and the start of the Sovereign Debt

Crisis in 2011 Q3. By contrast, the unemployment rate increased at a more pronounced pace

during recessions, rising on average by between 0.09 and 0.16 percentage points per month.

This pattern also implies that the unconditional distribution of the changes in the euro area

unemployment rate is skewed to the right (see Figure 3).

[Table 1 about here.]

The longer time series data for the United States shows a more cyclical unemployment

rate than that observed for the euro area. By September 2022, the US unemployment rate

was at levels broadly comparable to those observed in 1948. However, the US unemployment

rate displays a similar cyclical asymmetry to that of the euro area. Economic expansions are

linked with small average decreases in the unemployment rate on a magnitude of -0.06 percentage

points per month. Not considering the current expansion following the COVID-19 pandemic, this

average monthly decrease in the unemployment rate would be even milder, at -0.04 percentage

points per month. By contrast, the US unemployment rate increases considerably faster during

contractions at an average of 0.34 percentage points per month, or at 0.25 percentage points when

we exclude the COVID-19 pandemic contraction. These results also imply that the unconditional

distribution of the month-on-month changes in the US unemployment rate is markedly skewed

to the right (see Figure 4), similarly to that observed for the euro area.

[Figure 3 about here.]

[Figure 4 about here.]

Hence, in both regions downturns are considerably shorter than upturns. These results taken

together confirm that contractions are briefer and more violent than expansions in the euro area

and the US labour markets. They also imply that the risks around the unemployment rate

outlook are not symmetric, as the likelihood of large increases in the unemployment rate has been

historically higher than the likelihood of large decreases. The steepness of the monthly changes

in the unemployment rate is also visible when we extract the residuals from an autoregressive

model regression to account for potential dynamic or slower movements in the unemployment

rate over time. Both in the euro area and in the US, the symmetry of the residuals changes over

time, with the residuals more right skewed during recessions than during expansions.
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In more technical terms, we use the normality test proposed by Bai et al. (2005) to assess the

skewness of the changes in the unemployment rate in both the euro area and in the US. 5 We

calculate this statistic for the month-on-month, quarter-on-quarter, and year-on-year changes in

the unemployment rate, and also to the level of the unemployment rate. We report the results

of this test in Table 2 for our final sample from January 1999 to September 2022 for the euro

area and from January 1971 to September 2022 for the United States.

[Table 2 about here.]

The skewness statistic from Bai et al. (2005) rejects the normality of both the month-on-

month and quarter-on-quarter changes in the unemployment rate in the euro area, and it rejects

the normality of the unemployment rate levels in the US. Both results highlight that there is

cyclical asymmetry in the unemployment rate. For the United States, the adjustment of the

unemployment rate during the COVID-19 pandemic and ensuing recovery exhibited a set of

outliers that shifted the skewness statistic. When applied to the sample ending in December

2019, we find also a statistically significant skewness for the month-on-month changes in the US

unemployment rate.

More generally, we find that the skewness of the changes in the unemployment rate is time-

varying in both the euro area and the US. To showcase this, we compute the skewness statistic

from Bai et al. (2005) for the distribution of the month-on-month changes in the unemployment

rate on an expanding recursive window that comprises the first eight years of data for each region

and adds one month of data at the time before calculating again the skewness statistic. The

skewness statistics for the expanding windows are reported for the euro area in Figure 5 and for

the United States in Figure 6. In September 2022, the expanding window covers the full sample

and mimics the results in Table 2. For the euro area, the skewness statistic started very low

and increases to a high level close to the 90% confidence band over the entire sample. Skewness

becomes statistically significant in the euro area with the onset of the COVID-19 pandemic,

with the skewness statistics increasing outside the 90% confidence interval.

[Figure 5 about here.]

[Figure 6 about here.]

5. Details on how the statistic is computed can be found in the Appendix A.1
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The time variation in the skewness of the month-on-month changes in the unemployment

rate is even more prevalent in the US. The skewness statistic is statistically significant during

the period comprising the oil prices shocks and the Volcker’s recession in the late 1970s and

early 1980s, and then again following the Global Financial Crisis. The COVID-19 pandemic

shifted the skewness statistic because of the unique timing and magnitudes of the monthly

changes in the unemployment rate. As shown in Table 1, the unemployment rate increased by

5.6 percentage points per month between February 2020 and April 2020 and it decreased at a

faster pace from May 2020 onwards over a relatively longer period of time. These results mark

the importance of catering for the time-variation in the skewness of the unemployment rate in

a time series modelling approach and provides the main motivation for our empirical model in

the next section.

3 Model

3.1 Time varying skewness stochastic volatility VAR model

The time varying asymmetry of the unemployment rate leads to time varying tail risks that

should be considered by any model that attempts to predict any future dynamics in the labour

market. In this section we propose a fully parametric econometric model to provide a meaningful

characterisation of tail risk in the labour market both the euro area and the United States.

Our model is a standard VAR model equipped with stochastic volatility and skew normal

shocks.6 These additional features are designed to capture both shifts in the volatility and in

the skewness of the shocks to the endogenous variables in the VAR. The exact specification is:

yt = Π0 +Π1yt−1 + . . .+Πpyt−p +A−1H0.5
t εt (1)

εit ∼ Skew normal(ζit, ωit, λit)

where yt is the vector of endogenous variables, for t = 1, . . . , T periods (months). As endogenous

variables, we consider the month-on-month changes in the unemployment rate, a monthly real

activity indicator, the PMI output for the euro area and the CFNAI for the US, and a monthly

indicator for financial conditions, the CISS indicator for the euro area and the NFCI for the US.

6. This class of models is comprehensively covered in Renzetti (2023), with an application for the “growth-at-
risk” literature.
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A−1 is a lower triangular matrix with ones on the main diagonal, Ht = diag(h1,t, . . . , hN,t)

is the diagonal matrix collecting the volatilities of the shocks and εt is a column vector collecting

the skew normal (as in Azzalini (1986)) shocks εit with i = 1, . . . , N , and N being the number

of endogenous variables.

In general the shape parameter λit shifts both the mean and the variance of skew normal

distribution. To interpret εit as structural shocks in the VAR model, we then re-parametrize the

skew normal distribution parameters ζit and ωit such that E[εt] = 0N and E[εtε′t] = IN . That

is, we ensure that the elements in εt are unpredictable in terms of their mean and that they

have unit variance. This ensures as well that the elements on the diagonal matrix Ht provide

the sufficient information on the variances of the shocks while the shape parameters λit carry

sufficient information on the skewness of the shocks. In more detail, this re-parameterization

implies the following constraints on the location and scale parameters of the shocks:

ζi,t = −ωi,tδi,t

√
2

π
∀i, t (2)

ω2
i,t =

[
1− 2

π
δ2i,t

]−1

∀i, t (3)

where δi,t =
λi,t√
1+λ2

i,t

, with −1 < δi,t < 1. The re-parametrised skew normal shocks are identified

and interpreted as structural shocks assuming the short run restrictions implied by the ordering

of the variables in the model (Cholesky identification).7 We order the financial conditions

indicator last, so as to allow financial markets to adjust within the month to shocks to real

activity and to the unemployment rate. The unemployment rate is ordered second and it is

allowed to adjust within the month to shocks to real activity, but not to shocks to financial

conditions. This follows the standard Okun’s law, which relates real activity and the labour

market. Finally, shocks to real activity are ordered first and are assumed to impact the labour

and financial markets after one month.

To capture changes over time in the size of the shocks, the log-volatilities are assumed to be

independent stochastic processes which evolve over time according:

log(hi,t) = log(hi,t−1) + ηi,t ηi,t ∼ N (0, σ2
i,η) (4)

7. It is worth to mention that as discussed in Primiceri (2005) and recently outlined in Arias et al. (2021) the
ordering of the variables in this model matters not only for the identification of the shocks but also for estimation.
This occurs because the Normal prior on the free elements of the lower triangular matrix A induces a priori an
asymmetric prior for the variance-covariance matrix of the reduced-form residuals.
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where i = {PMI,∆U,CISS} for the euro area and i = {CFNAI,∆U,NFCI} for the US, and

where ∆U stands for the month-on-month changes in the unemployment rate.

On the other hand, to capture changes in the symmetry of the shocks, it is assumed that

the shape parameters λit are another set of independent stochastic processes with their own

dynamics. In general, positive (negative) values of λi,t are associated to right (left) skewed

shocks and right (left) skewed shocks decrease the likelihood of left (right) tail events while

correspondingly increase the likelihood of right (left) tail events. For example, when the shape

parameters of the shocks to the unemployment rate is positive, namely λ∆U,t > 0, the labour

market shock is skewed to the right, and large increases in the unemployment rate become more

likely as a consequence of this shock. We consider a specification in which the endogenous

variables on real activity and financial conditions can be thought as risk factors affecting the

skewness of the shocks to the unemployment rate. In intuitive terms, this implies that the

monthly changes to the unemployment rate are more likely to be hit by adverse right skewed

shocks when the state of the economy is weak, either via a bad performance of real activity or a

strong tightening of financial conditions. In this sense, we assume that these risk factors provide

information on the evolution of the shape parameter of shocks to the unemployment rate over

time, following:

λ∆U,t = ϕ1,∆Uλ∆U,t−1 + ϕ2xt−1 + ξ∆U,t ξ∆U,t ∼ N (0, σ2
ξ,∆U ) (5)

where xt−1 is a vector that includes a constant and the lagged risk factors, being {PMIt−1, CISSt−1}

for the euro area and {CFNAIt−1, NFCIt−1} for the US. This setup makes the monthly changes

in the unemployment rate to be our target variable and enables to capture persistency and state

dependence in the shape of the shocks to the unemployment rate in connection to past de-

velopments in real activity and in the financial conditions.8 The coefficients in the vector ϕ2

determine the relationship between the risk factors and the shape of the shocks. When this

coefficient is positive, an increase in the risk factors in associated to an increase of the skewness

of the shock, that is to a shift of the conditional quantiles of the change in the unemployment

rate to the right; conversely, when this coefficient is negative, increases of the risk factors are

associated to a decrease in the skewness of the shocks, that is, to a shift of the conditional

8. It is important to notice that in our specification the risk factors do not enter the variance of the shocks,
thus only moving the asymmetric shape of the distribution of shocks.
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quantiles of the change in the unemployment rate to the left.

In their turn, in the model, shocks to real activity and to financial conditions are allowed

to be potentially asymmetric with the degree of asymmetry changing over time. In particular,

we assume that the shape parameters of the shocks to the real activity and financial conditions

indicators follow independent AR(1) stochastic processes

λi,t = ϕ1,iλi,t−1 + ξi,t ξit ∼ N (0, σ2
ξ,i) (6)

for i = {PMI,CISS} in the euro area and i = {CFNAI,NFCI} for the US.

Given that the risk factors influence not only the conditional mean of the changes in the

unemployment rate through equation (1) but also the conditional skewness via equation (5), this

model can capture the potential non-linear effects of real activity and financial conditions on the

unemployment rate, similarly to the quantile regression framework by Kiley (2022). However

our approach displays some advantages with respect to the methods based on univariate quantile

regressions. First, our Bayesian VAR model allows to properly address the rich autocorrelation

structure of macroeconomic time series and to exploit a potentially richer information set that

is coherent over time, while this is in general more difficult in the univariate quantile regression

framework. Second, we can obtain the entire predictive distribution for the changes in the

unemployment rate in a single step, without the need of relying on quantile interpolation methods

as it is done in the “at-risk” literature following the paper of Adrian et al. (2019). Third, we

can jointly model the multivariate dynamics of all endogenous variables in our model, which

in the case of our application are the changes the unemployment rate, the indicator for real

activity, and the indicator for financial conditions. Quantile regression based methods focus

instead on one target variable in a partial equilibrium without accounting explicitly for general

equilibrium feedback effects over time. Fourth, our flexible structure allows us to assess tail risks

simultaneously in multiple target variables. We will develop on this in Section 5, where we use

an augmented version of our model to quantitatively assess the risk of stagflation in the euro

area and in the US. Finally, a more general advantage of our BVAR methodology is that even

by adding time varying skewness to the model we are still able to use all the standard tools used

for policy evaluation and scenario analysis that are traditionally used in the VAR literature,
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which are not readily available to univariate quantile regression based methods.9

3.2 Priors and estimation

The equations of the time varying skewness stochastic volatility VAR model form a non-linear

and non-Gaussian state space model. The model is estimated using the Gibbs sampler algorithm

described by Renzetti (2023). The estimation strategy goes around the potential difficulties

arising because of non-Gaussianity of shocks by leveraging on the normal mixture representation

of the skew normal distribution with a truncated normal used as the mixing distribution and

by exploiting the triangularization of the VAR system as in Carriero et al. (2019) to estimate

the parameters and the mixing variables equation by equation.10 The Gibbs sampler algorithm

includes particle steps to approximate the full conditional posterior distributions of the log-

volatilities and the shape parameters.11 The transition equations of the latent states are used as

importance densities in the particle steps. In order to alleviate path degeneracy in the underlying

conditional sequential Monte Carlo sampler, we exploit the ancestor sampling procedure that

enables a fast mixing even when using seemingly few particles.12

As for the specification of the prior distribution for the parameters of the model, we specify a

Normal prior for the autoregressive coefficients stored in the matrices Πj with j = 0, . . . , p with

Minnesota type variance covariance matrix (Litterman (1986)). Following Cogley et al. (2005),

we specify a Normal prior for the free elements in the matrix A. We also assume a Normal

prior for the initial state of the log-volatilities log(hi,0), for the shape parameters λi,0, for the

coefficients in the state equations of the shape parameters ϕ1,i and for the elements of ϕ2. Finally,

we assume an inverse Gamma prior for the variance of the innovations to the log-volatilities and

for the variance of the shape parameters. Table 6 in Appendix A.3 summarises our choices on

the priors and relevant hyperparameters.

9. Multivariate quantile regression based methods (as in Chavleishvili et al. (2019)) mitigate a large share of
the disadvantages faced by univariate quantile regressions. The main difference between our model and a QVAR is
that we use a simpler and fully parametric structure that allows us to extend the model in a more straightforward
way that is also more efficient from a computational perspective.
10. See Appendix A.2 and in particular equation (13) for further details on the mixture representation.
11. It is worth to remark that in addition to referring to a multivariate model, the estimation algorithm is

conceptually different from Wolf (2021) since the algorithm used in this paper leverages on the normal mixture
representation of the skew normal random variable as detailed in the Appendix A.2. In particular, the estimation
procedure exploits the fact that conditionally on the vector of mixing variables vt, on the elements of the diagonal
matrix ∆t (which are one to one map to the shape parameters λ1,t, . . . , λN,t) and on the log-volatilities the state
space is Gaussian. Further details on this difference can be found in Renzetti (2023).
12. The ancestor sampling procedure was developed by Lindsten et al. (2014), who provide a formal proof for

the convergence of the algorithm and a comprehensive study on the properties of the sampler.

ECB Working Paper Series No 2840 14



The steps of the Gibbs sampler to simulate draws from the joint posterior distribution of the

parameters Θ, the latent states s (i.e., the log-volatilities and the shape parameters), and the

mixing variables v, are as follows:

1. Draw the path for the mixing variables {vit}Tt=1 from p(vi1 . . . , viT |Θ, s) for i = 1, . . . , N .

2. Draw the VAR coefficients Π from p(Π|Θ,v, s). The coefficients are drawn equation by

equation exploiting the triangular algorithm developed in Carriero et al. (2019).

3. Draw the free elements in the lower triangular matrix A from p(A|Θ,v, s).

4. Draw the variances in the state equations of the shape parameters σ2
ξ,i from p(σ2

ξ,i|Θ, s, v)

for i = 1, . . . , N .

5. Draw the autoregressive coefficients in the state equations of the shape parameters ϕ1,i

from p(ϕ1,i|Θ, s, v) for i = 1, . . . , N . and the coefficients of the risk factors in the state

equation of the shape parameter of the target variable from from p(ϕ2|Θ, s, v).

6. Draw the variances in the state equations of the log-volatilities σ2
η,i from p(σ2

η,i|Θ, s, v) for

i = 1, . . . , N .

7. Draw the initial states for the volatilities hi,0 from p(hi,0|Θ,v, s) for i = 1, . . . , N .

8. Draw the initial states for the shape parameters λi,0 from p(λi,0|Θ,v, s) for i = 1, . . . , N .

9. Draw the path of the shape parameters {λit}Tt=1 from p(λi1, . . . , λiT |Θ,v, s) for i =

1, . . . , N using the particle approximation.

10. Draw the path of the volatilities {hit}Tt=1 from p(hi1, . . . , hiT |Θ,v, s) for i = 1, . . . , N .

using the particle approximation.

The Markov Chain Monte Carlo (MCMC) algorithm consists of 50,000 draws, with the initial

30,000 draws discarded as burn-in. In the particle steps, we use 100 particles to approximate

the full conditional posterior distribution of the volatilities and 150 particles to approximate the

full conditional posterior distribution of the shape parameters.
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4 Results

4.1 In-sample analysis

We start by examining the in-sample performance of our time varying skewness and stochastic

volatility (TVSSV) VAR model. The starting point is to assess the estimated impulse response

functions (IRFs) of our model. In particular, for both the euro area and the US, the IRFs

identify that an expansionary shock to real activity implies a decrease in the unemployment

rate, while not having a strong impact on the financial conditions. Similarly, a shock to the

labour market that increases the unemployment rate has no impact on financial conditions but

induces instead a feedback loop that decreases real activity. Finally, a shock that tightens the

financial conditions induces a slow down in real activity and increases the unemployment rate.

The IRFs unveil that the model is able to capture important relationships such as the Okun’s

law, in which improvements in real activity are associated with declines in the unemployment

rate, and the fact that the tightening of financial conditions induces on average a slowdown in

real activity and an increase in the unemployment rate.

[Figure 7 about here.]

[Figure 8 about here.]

The matrices with the autoregressive coefficients in Π and the impact matrix A are assumed

to be constant and therefore invariant with respect to the state of the economy. As well, in

the model, the impulse response functions are symmetric for both positive and negative shocks.

Instead, the likelihood of good and large shocks versus bad and large shocks is state dependent

and changes over time as a function of real activity and financial conditions. This implies that

large adverse shocks are more likely to occur during recessions, as these are periods when real

activity is depressed and financial conditions are tight. We include this potential non-linearity

via equation (5), which allows for past developments in real activity and financial conditions to

act as risk factors affecting the shape of the unemployment rate shocks. Table 3 presents the

estimated posterior median of these coefficients and their 15th-85th credible sets. For the US we

report the estimates both from the model estimated using observations up to February 2020 and

the full sample in which we include time fixed effects in equation (5) to account for the Covid

period.13

13. The time fixed effects cover the period from March 2020 up to July 2020.
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[Table 3 about here.]

As it would be expected, the shape parameter of shocks to the unemployment rate is esti-

mated to increase – thus leading to extreme adverse shocks becoming more likely to materialise

– following weaker developments in real activity and/or tighter financial conditions, both for

the euro area and for the US. This is reflected by the sign of the estimated posterior median

coefficients. However, for both areas the 15th-85th credible sets for these coefficients are wide

and include zero.

Shocks to the changes in the unemployment rate exhibits both time varying volatility and

time varying skewness. In particular, Figure 9 and Figure 10 shows the estimated paths for the

volatility and the shape parameters in the euro area and in the United States. For the euro

area, the volatility of unemployment rate shocks increased gradually over time from 1999 to

2015. The same pattern occurred in the United States over the same period. The volatility of

unemployment rate shocks is however more time-varying in the US over the same period than

in the euro area, although this is partially due to the longer data availability. In general, the

volatility of unemployment rate shocks is broadly countercyclical in both areas, usually increas-

ing during recessions and decreasing during expansions. However, it did not move similarly

across all business cycles. For example, the increase in volatility during the Global Financial

crisis and Sovereign Debt crisis were quite limited in the euro area. For the United States,

the volatility of the unemployment rate shocks did not increase during the recessions in the

early 1980s and increased instead right after the start of the economic recovery. Both areas

recorded a strong increase in the volatility of unemployment rate shocks during the COVID

pandemic. This strong increase in the unemployment rate shocks volatility was considerably

more pronounced for the United States, reaching historical magnitudes as the unemployment

rate suddenly increased from 3.5% in February 2020 to 14.7% in April 2020. In the euro area

the volatility of unemployment rate shocks also increased but the magnitudes remained moder-

ate, as European countries benefited from the widespread use of job retention schemes, which

protected employment relations between firms and employees during the pandemic.

[Figure 9 about here.]

[Figure 10 about here.]

Shocks to the unemployment rate are on average right skewed both in the euro area and the
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United States. However, the shape parameter ruling the skewness of unemployment rate shocks

moves countercyclically over time and increases during recessions. This is partially explained

by the cyclicality of risk factors as recessions are characterised by a lower performance of real

activity and by a tightening of financial conditions.

4.2 Labour at risk

The positive skewness of unemployment rate shocks in our VAR model implies that the unem-

ployment rate is more likely to increase at a faster pace when real activity is weaker or when

financial conditions are tighter. These “bad” states of the world increase the likelihood of ad-

verse shocks to the unemployment rate to occur. For policymakers this raises two important

questions – how many jobs can be at risk in case the economy is suddenly hit by a series of large

adverse shocks? And how likely is this to happen over the next year?

We define “labour-at-risk” (LaR) to be the lowest predicted increase in the unemployment

rate following a series of shocks, after excluding all the more favourable outcomes that could

occur at a given joint probability level. We denote this probability level to be α. Moreover, we

estimate our measure of labour-at-risk for a given h-periods ahead horizon. This is,

LaR(α)t+h = F−1
∆hUt+h

(α) α ∈ (0, 1) (7)

Where F−1 is the inverse predictive cdf of the change in the unemployment rate. In simple

terms, we define labour-at-risk (α) to be the α percentile of the predictive distribution of changes

in the unemployment rate h-periods ahead (∆hUt+h). We follow Kiley (2022) and focus on

α = 0.8, that is, we look to the minimum increase in the unemployment rate that would occur

in case the economy was hit by shocks in the set of the 20% most adverse shocks to real activity,

labour market, and financial conditions. Figure 11 for the euro area and Figure 12 for the United

States show the one month ahead predictive densities for the changes in the unemployment rate

in our model. For the euro area, we compute the predictive distribution of changes in the

unemployment rate from January 2007 to September 2022. For the United States, we take

advantage of the longer time series available and plot the predictive distribution of changes in

the unemployment rate from January 1999 to September 2022. In red, we highlight the possible

changes in the unemployment rate that would be equal or higher than our labour-at-risk measure

at the 80th percentile.
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[Figure 11 about here.]

[Figure 12 about here.]

As the Figure shows, the predictive distribution of the changes in the unemployment rate

changes over time reflecting any shift in its conditional mean, in its conditional variance in its

conditional skewness. Hence, shifts in the conditional mean, in the conditional variance and in

the conditional skewness contribute jointly to the determine the time variation of our labour-

at-risk measure. Figure 13 and Figure 14 show the estimated labour-at-risk for the euro area

and the United States in a two-dimensional setup. Instead of focusing only on the predicted

labour-at-risk one month ahead, we look also at different forecast horizons, and in particular we

highlight the predicted labour-at-risk both one quarter ahead and one year ahead. We compare

our estimates of labour at risk with those that would arise from the two-step approach from

Adrian et al. (2019) that is based on quantile regressions, together with the realised value for

the corresponding change in the unemployment in the same period and within the same horizon.

The two econometric approaches provide observationally similar estimates for labour-at-risk.

[Figure 13 about here.]

[Figure 14 about here.]

Our labour-at-risk measure targets well on average the realised changes in the unemploy-

ment rate during recessions in both the euro area and the United States. These are periods

characterised by sudden increases in the unemployment rate, implying that our labour-at-risk

measure provides information on the amount of jobs that are at risk in case the economy is hit by

recessionary shocks. The temporary layoffs following the COVID pandemic and the associated

lockdowns in the United States provided a unique set of shocks that our labour at risk measure

was not able to fully cater for. Hence, the increase in the unemployment rate in the early 2020

was an outlier considerably stronger than predicted by our labour at risk measure. For the euro

area the decrease in real activity and increase in financial tightening were good predictors of

the increase in the unemployment rate over the same period as the amount of temporary layoffs

was limited via the widespread use of job retention schemes, which mitigated strongly possible

increases in the unemployment rate. Hence, for the euro area, the increases in the unemploy-

ment rate during the COVID pandemic were considerably closer to our labour-at-risk estimate.
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By contrast, our measure of labour-at-risk is higher than the changes in the unemployment rate

during recoveries and expansions, as the unemployment rate usually decreases in those periods.

Relatedly, we use our model to estimate the conditional probability of “large” changes in

the unemployment rate given the other variables in the model. At any given horizon h-months

ahead we compute the probability of changes in the unemployment rate to be larger than a

given threshold. This is calculated by computing the ratio between the number of simulated

posterior draws in which changes in the unemployment rate exceed the threshold of interest, over

the total number of simulated posterior draws. To identify the threshold across the different

horizon, we look to the unconditional distribution of monthly, quarterly and yearly changes

in the unemployment rate for both the euro area and the US. We denote large swings in the

unemployment rate at the 20th percentile (i.e., a large downward swing) and 80th percentile

(i.e., a large upward swing) in this distribution.14

[Figure 15 about here.]

[Figure 16 about here.]

Figure 15 show these probabilities for the euro area and Figure 16 for the United States.

For the euro area, the periods in which the predicted probability of a quarterly change in the

unemployment rate is higher coincide with the three recessions observed during our sample, in

which real activity plunged and financial conditions tightened substantially.15 Outside these

recessionary periods, the model predicts only low probabilities of large increases in the unem-

ployment rate for the euro area at 20% or below. More recently, the probability of a large yearly

upward swing in the unemployment rate in the euro area increased during 2022, reaching almost

40% in September 2022 (the last observation in our sample). Conversely, the probability of

large downward swings in the unemployment rate is higher during the expansionary periods and

practically null during recessions. Similar results are obtained for the United States, although

14. For the euro area, large upward swings are identified when the increase in the unemployment rate is larger
than 0.05 percentage points for h = 1 (one month ahead), 0.13pp for h = 3 (one quarter ahead), and 0.51pp for
h = 12 (one year ahead). Conversely, large downward swings for the euro area are identified for decreases in the
unemployment rate stronger than -0.08pp for h = 1, -0.23pp for h = 3, and -0.84pp for h = 12. For the US,
large upward swings are identified for increases in the unemployment rate larger than 0.13pp for h = 1, 0.20pp
for h = 3, and 0.83pp for h = 12, while large downward swings for decreases in the unemployment rate stronger
than -0.15pp for h = 1, -0.28pp for h = 3, and -0.81pp for h = 12. Details on the percentiles of the unconditional
distribution can be found in Table 7.
15. We focus on the quarterly probabilities for two reasons. First, the monthly thresholds are relatively low

and more prone to short-term corrections. Second, the predicted yearly increases in the unemployment rate have
larger uncertainty bands and are usually less timely for policymakers.
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the probabilities of large swings in the unemployment rate are more symmetric during expan-

sion periods than for the euro area. The post-pandemic period in the US was characterised

by an increase in both the probabilities of large upward swings and large downward swings in

the unemployment rate, as a result of the strong increase in the volatility of the changes in the

unemployment rate that stemmed from the large reallocation flows that followed the temporary

layoffs and Great Resignation, and the re-entry of these workers back into the US labour market.

4.3 Out-of-sample forecast accuracy

To assess the forecast accuracy of our model, we compare the forecasts from our time vary-

ing skewness VAR model with stochastic volatility (BVAR-TVSSV) to the forecasts from other

competing models: (i) a Bayesian VAR model with Independent Normal Inverse-Wishart prior

(BVAR), (ii) a Bayesian VAR model with stochastic volatility (BVAR-SV), and (iii) the quan-

tile regression based method proposed by Adrian et al. (2019). This set of competing models

allows us to assess the relative importance of accounting for modelling different features such as

stochastic volatility, time varying skewness, and non-linearities among the risk factors and the

target variables. On the one hand, the BVAR-SV, BVAR-TVSSV and quantile regression allow

to capture time varying conditional volatility, while the simple BVAR cannot. On the other

hand, only the BVAR-TVSSV and the quantile regression based method allow to account for

time varying conditional skewness and the for the potential nonlinear effect of the real activity

and financial risk factors on the labour market.16

The forecasting exercise is designed such that we compute the recursive one month, one

quarter, and one year ahead forecasts on starting in January 2007 for the euro area and in

January 1999 for the US. The forecast accuracy is evaluated using an expanding window over

the sample between January 2007 and September 2022 for the euro area, described in Table 4,

and over the sample between January 1999 and September 2022 for the United States, showcased

in Table 5. We highlight the best performer according to various metrics in bold. These metrics

comprise the average Root Mean Squared Error (RMSE) to evaluate point forecast accuracy,

the average Cumulative Ranked Probability Scores (CRPS) to evaluate overall density forecast

accuracy, the average right and left tail CRPS (Gneiting et al. 2011) to evaluate density forecast

accuracy on the tails of the predictive distributions, and the average quantile scores at the 5th,

16. Details on the competing models are presented in the Appendix A.4.
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10th, 20th, 80th, 90th, and 95th percentiles to evaluate the accuracy for targeted percentiles.17

[Table 4 about here.]

[Table 5 about here.]

Our BVAR TVSSV model is almost always the best performer both for euro area and for

the US in terms of density forecast accuracy, as measured by the CRPS. When it is not the

best model, it nevertheless provides accurate and a competing forecasts to the other models.

Both quantile regression based model and our BVAR TVSSV model provide the most accurate

forecasts according to the RMSE for the euro area, suggesting the importance of accounting for

the non-linear effects of real activity and financial conditions on the unemployment. For the

US, BVAR TVSSV and BVAR SV provide most accurate point forecasts. For what concerns

density forecast accuracy, for both areas we find that our BVAR TVSSV model and the BVAR-

SV often provide the most accurate density forecasts out of sample, outperforming both the

simple BVAR and the quantile regression based model. This result confirms the importance of

modelling changes in the conditional variance in order to obtain accurate density forecasts of

the unemployment rate, consistently with Carriero et al. (2020a, 2020b). Regarding the density

forecast accuracy on the tails, the best performers are often the BVAR TVSSV for the left tail

and the quantile regression based model for the right tail according both to the tail weighted

CRPS and the quantile scores metrics.

As a caveat, the performance of our model is sometimes not as good as that of quantile

regression based methods on the right tail, while it is always outperforming quantile regression

on the left tail. This comes from the fact that the median estimate of the shape parameter

of the shocks to changes in the unemployment rate is estimated to be persistently positive for

all the sample in analysis. That is, the model at times efficiently assigns low probability to

large decreases in the unemployment rate while assigning sometimes too high probability to

large increases. This comes from the flexible but parametric nature of our model which allows

the shape of the distribution of shocks to vary over time according to a persistent stochastic

process. This feature allows for the model structure to be easily augmented to extend the analysis

towards a multivariate setting, which we will explore in the next section where we assess the

risk of stagflation.

17. The details about the forecasts metrics can be found in the Appendix A.5
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5 Stagflation risk

The recent sudden increase in inflation rates in both the euro area and the United States gave

rise to a discussion on whether these economies would enter into a stagflation period. The term

was initially coined by the British politician Iain Macleod in 1965, and was later used to assess

the macroeconomic situation in the United States in the early 1970s. Stagflation is loosely

defined as periods of low or negative output growth, an increasing or persistently high level of

unemployment, and an inflation rate that is high by historical standards (Ha et al. (2022)).

To account for the risk of stagflation, we extend our model to include monthly data on

inflation rates. For the euro area we use the Harmonized Index of Consumer Prices (HICP) for

all items and for the United States we use the Consumer Price Index (CPI) for all items.18 We

slightly adjust our BVAR TVSSV to account for the year-on-year changes in the unemployment

rate and the yearly inflation rate, πt. We denote yt = [PMIt,∆
12Ut, πt,CISSt] for the euro area

and yt = [CFNAIt,∆
12Ut, πt,NFCIt] for the United States, where ∆hUt = Ut − Ut−h. The risk

factors are left unaltered compared to the model in Section 3, but are now allowed to affect the

shape of the shocks both to changes in the unemployment rate and to inflation,

λ∆12U,t = ϕ1λ∆12U,t−1 + ϕ2xt−1 + ξ∆12U,t ξ∆12U,t ∼ N (0, σ2
ξ,∆12U )

λπ,t = ρ1λπ,t−1 + ρ2xt−1 + ξπ,t ξπ,t ∼ N (0, σ2
ξ,π)

where xt−1 is the vector of lagged real activity and financial risk factors. This specification

is in line with López-Salido et al. (2020), who document a nonlinear relation between financial

conditions and inflation using quantile regression and a Markov switching model.

We define stagflation risk as the joint probability that the yearly changes in the unemploy-

ment rate and inflation rates are above their given thresholds at any given point in time. In this

way, we consider as stagflation periods those with a large increase in the unemployment rate

over a year and with high inflation levels. These thresholds are identified by making use of the

information in the unconditional distribution of yearly changes in the unemployment rate and

inflation rates for both the euro area and the United States over time. We use the wider sample

18. The series for the HICP can be obtained from the ECB Statistical Data Warehouse and the series for the
CPI is obtained from the FRED-MD database with the code CPIAUSL.
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for the United States to calibrate our threshold for inflation.19

The Great Moderation brought along a period with lower turbulence to inflation (Davis

et al. (2008)). This was a structural change to the economy not only driven by a decline in

the volatility of the shocks, but also by the change in the way these shocks propagate (Cogley

et al. (2005); Primiceri (2005); Giannone et al. (2008)). Therefore, we calibrate our thresholds

for inflation and the unemployment rate changes with data from 1984 onwards for the US. The

80th percentile of the distribution of US inflation rates stands at 4%. For the yearly changes in

the unemployment rate, we set the threshold at 0.5 percentage points. This corresponds to the

80th percentile for the euro area since 1999 and to the 83rd percentile for the US since 1984.

We assess the risks of stagflation in Figure 17 for the euro area. In particular, we show the

estimated three months ahead joint probabilities on yearly changes in the unemployment rate

exceeding the 0.5 percentage points and inflation surpassing 4%. We decompose the stagflation

risk by displaying separately the labour at risk channel (in red) and the inflation risk channel

(in blue).20 The models are estimated with data available up to September 2022, implying that

we assess the risk of stagflation up to December 2022.

[Figure 17 about here.]

There was only a limited risk of stagflation in the euro area since 2007. The probability of

stagflation reached around 10% in December 2008 during the Global Financial crisis, first with

an increase in inflation risk and later with a strong increase in the amount of labour at risk.

During the Sovereign Debt crisis there was a high degree of labour at risk but no inflation risk.

The risk of stagflation decreased and remained virtually null until the second half of 2022, when

it started increasing driven by the persistently high levels of inflation and a gradually increasing

degree of labour at risk in the economy.

Figure 18 provides further information on the risk of stagflation by contrasting the contour

plots for the 20th, 50th, 80th and 90th percentiles of the bivariate predictive densities for inflation

and yearly changes in the unemployment rate in the euro area between December 2008, using

19. The correlation between the inflation rates in the euro area and in the US stands at above 85% between
January 1999 and September 2022, and inflation rates moving in a broadly synchronised way for both areas. Hence,
we use the historical distribution of inflation rates in the US as an approximation for the historical distribution
of inflation rates in the euro area.
20. We compute the joint probability of two variables exceeding a given threshold at a given horizon h by

computing the ratio between the number of draws in which the two variables exceed the threshold over the total
number of draws.
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data up to September 2008, and December 2022 using data up to September 2022. While the

stagflation risk reached similar magnitudes in both periods, it was closer to both borders of

the stagflation area in 2008, with a more limited inflation risk and a slightly higher labour at

risk. By contrast, there is a higher uncertainty in the estimate of stagflation risk in 2022 as

the volatility of the bivariate predictive density is wider. This implies that it is possible for the

stagflation risk to increase at a fast pace in the near future in case the degree of labour at risk is

not promptly contained, given the steep response of the unemployment rate to a slower growth

in real activity or to a tightening of financial conditions.

[Figure 18 about here.]

While stagflation risk remained limited for the euro area, this was not the case for the United

States since 1999. In fact, our estimated measure for stagflation risk increased above 90% in

the second half of 2008 and around 40% in 2010. The degree of labour at risk is highest either

during or immediately after each recession, while inflation risk was consistently higher for the

US before the Global Financial Crisis. We highlight the predicted increase in the stagflation risk

for the US with the increase in energy prices in 2021, which preceded the developments in the

euro area. However, the risk of stagflation has decreased in 2022 due to the strong performance

of the US labour market, which points in our model to a lower risk of unemployment while the

inflation risk remains extremely elevated.

[Figure 19 about here.]

[Figure 20 about here.]

A comparison between the estimated stagflation risk for October 2008, using data up to July

2008, and December 2022 using data up to September 2022 is showcased in Figure 20. It unveils

that the current economic juncture is considerably more uncertain than that in 2008, similarly

to what happened for the euro area. However, and in contrast to what was observed for the

euro area, this uncertainty seems to be more prevalent in the predicted degree of labour at risk.

6 Conclusion

We develop a BVAR model with time varying skewness and stochastic volatility that caters for

the fact that the unemployment rate changes are asymmetric over the business cycles, declining
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slowly and on average during economic expansions and rising suddenly and violently during

downturns. The model is applied to both the euro area and the United States to capture

and quantify the degree of labour-at-risk in the economy, providing policymakers with timely

information about possible risks affecting the labour market and showing how much can the

unemployment rate increase at any given moment in time if the economy is hit by a persistent

series of negative shocks. Movements in the average response of the unemployment rate and

in the asymmetry of labour market shocks depend both on the developments in real activity

or on the tightening of financial conditions. Further, we use our BVAR to track stagflation

risk in the economy, defined as the joint event of both a high degree of labour at risk and a

high inflation risk. The analysis of joint risks could prove important for the assessment of the

unemployment-inflation trade-off and of the scope of monetary policy. Our work provides also

the foundation for embedding asymmetric shocks as part of the toolkit used for the estimation

of medium-scale DSGE models.
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López-Salido, J. David, and Francesca Loria. 2020. Inflation at Risk. Finance and Economics

Discussion Series 2020-013. Board of Governors of the Federal Reserve System (U.S.), Febru-

ary.

McKay, Alisdair, and Ricardo Reis. 2008. “The brevity and violence of contractions and expan-

sions.” Journal of Monetary Economics 55:738–751.

Mitchell, Wesley Clair. 1927. Business Cycles: The Problem and Its Setting. National Bureau of

Economic Research.

Montes-Galdón, Carlos, and Eva Ortega. 2022. Skewed SVARs: tracking the structural sources

of macroeconomic tail risks. Working Papers 2208. Banco de España, March.

Mortensen, Dale T. 1982. “Property Rights and Efficiency in Mating, Racing, and Related

Games.” American Economic Review 72 (5): 968–979.
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Figure 1: MoM changes in the unemployment rate and PMI output and CISS

Notes: The figure shows the time series of the month-on-month changes in the unemployment rate, toghether with the PMI Output (minus 50
divided by 100) and the CISS. The shadow bands are for the EACN recessions periods.

Figure 2: MoM changes in the unemployment rate and CFNAI and NFCI

Notes: The figure shows the time series of the month-on-month changes in the unemployment rate, toghether with the CFNAI and the NFCI. The
shadow bands are for the NBER recessions periods.
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Figure 3: Unconditional distribution of month-on-month changes in the unemployment rate in
the euro area

Notes: The figure shows the histogram and the estimated distribution of the month-on-month changes in the unemployment rate from January 1999
to September 2022 in the euro area.

Figure 4: Unconditional distribution of month-on-month changes in the unemployment rate in
the US

Notes: The figure shows the histogram and the estimated distribution of the month-on-month changes in the unemployment rate from January 1971
to September 2022 in the US.
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Figure 5: Bai et al. (2005) skewness statistic in the euro area

Notes: The figure shows the time series of the Bai et al. (2005) skewness statistic for the month-on-month changes in the unemployment rate in the
euro area computed using expanding recursive windows of 8 years. The dashed horizontal black lines shows the 90% confidence interval.

Figure 6: Bai et al. (2005) skewness statistic in the US

Notes: The figure shows the time series of the Bai et al. (2005) skewness statistic for the MoM changes in the unemployment rate in the United
States computed using expanding recursive windows of 8 years. The dashed horizontal black lines shows the 90% confidence interval.
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Figure 7: Estimated impulse response functions from VAR model for the euro area

Notes: In the first row we report the impulse response functions (IRFs) to a one standard deviation shock to the real
activity indicator (PMI Output). In the second row we report instead the IRFs to a one standard deviation shock to the
monthly changes in the unemployment rate, and in the third row the IRFs to a one standard deviation shock to the financial
conditions indicator (CISS).

Figure 8: Estimated impulse response functions from VAR model for the US

Notes: In the first row we report the impulse response functions (IRFs) to a one standard deviation shock to the real activity
indicator (CFNAI). In the second row we report instead the IRFs to a one standard deviation shock to the monthly changes
in the unemployment rate, and in the third row the IRFs to a one standard deviation shock to the financial conditions
indicator (NFCI).
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Figure 9: Estimated volatility and shape parameter of shocks to changes in the unemployment
rate

Notes: The figure shows the time series of the estimated volatilities and shape parameters of the shocks to changes in the unemployment rate in the
trivariate TVSSV VAR model for the euro area. The shadow bands are for the EACN recessions periods.

Figure 10: Estimated volatility and shape parameter of shocks to changes in the unemployment
rate for the US

Notes: The figure shows the time series of the estimated volatilities and shape parameters of the shocks to changes in thew unemployment rate in
the trivariate TVSSV VAR model for the US. The shadow bands are for the NBER recessions periods.
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Figure 11: One month ahead predictive distribution of changes in the unemployment rate and
80th percentile labour-at-risk for the euro area

Notes: The figure shows the one month ahead predictive distribution for the month-on-month changes in the unemployment rate from January 2007
to September 2022 in the euro area. In red the part of the distribution on the right of the estimated 80th percentile.

Figure 12: One month ahead predictive distribution of changes in the unemployment rate and
80th percentile labour-at-risk for the US

Notes: The figure shows the one month ahead predictive distribution for the month-on-month changes in the unemployment rate from January 1999
to September 2022 in the US. In red the part of the distribution on the right of the estimated 80th percentile.
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Figure 13: Estimated labour-at-risk 80th percentile for the euro area

Notes: The figure shows the estimated one month ahead (first panel), one quarter ahead (second panel), and one year ahead (third panel) estimated
80th percentile of the predictive distribution of the month-on-month change in the unemployment rate (labour-at-risk) in the euro area. In red
the estimates according to the TVSSV VAR model, in yellow the estimates according to the two-step quantile regression based method by Adrian
et al. (2019) and in black the realization.

Figure 14: Estimated labour-at-risk 80th percentile for the US

Notes: The figure shows the estimated one month ahead (first panel), one quarter ahead (second panel), and one year ahead (third panel) estimated
80th percentile of the predictive distribution of the month-on-month change in the unemployment rate (labour-at-risk) in the US. In red the estimates
according to the TVSSV VAR model, in yellow the estimates according to the two-step quantile regression based method by Adrian et al. (2019)
and in black the realization.
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Figure 15: Predicted probability of large changes in the unemployment rate for the euro area

Notes: The figure shows the estimated one month ahead (first panel), one quarter ahead (second panel), and one year ahead (third panel) probability
of changes in the month-on-month change unemployment rate larger than the unconditional 20th percentile (in blue) and 80th percentile (in red) in
the euro area.

Figure 16: Predicted probability of large changes in the unemployment rate for the US

Notes: The figure shows the estimated one month ahead (first panel), one quarter ahead (second panel), and one year ahead (third panel) probability
of changes in the month-on-month change unemployment rate larger than the unconditional 20th percentile (in blue) and 80th percentile (in red) in
the US.
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Figure 17: One quarter ahead probability of stagflation in the euro area

Notes: The figure shows the estimated one quarter ahead probability of the change in the year-on-year unemployment rate being greater than 0.5pp
(in red), the year-on-year inflation rate being greater than 4% (in blue) and the probability of both events occurring (in black) in the euro area.
The shadow bands are for the EACN recessions periods.

Figure 18: Contour plot for one quarter ahead joint predictive densities for πyoy and ∆Uyoy in
the euro area: December 2008 vs December 2022

Notes: The figure shows the contours from one quarter ahead bivariate predictive density for the year-on-year change in the unemployment rate
and year-on-year inflation rate for December 2008 and September 2023 in the euro area. The contours identify 20% 50%, 80% and 90% of the
bivariate predictive density. The area inside the red-dotted rectangle signals year-on-year inflation greater than 4% and changes in the year-on-year
unemployment rate greater than 0.5pp.
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Figure 19: One quarter ahead probability of stagflation in the US

Notes: The figure shows the estimated one quarter ahead probability of the change in the year-on-year unemployment rate being greater than 0.5pp
(in red), the year-on-year inflation rate being greater than 4% (in blue) and the probability of both events occurring (in black) in the US. The
shadow bands are for the NBER recessions periods.

Figure 20: Contour plot for one quarter ahead joint predictive densities for πyoy and ∆Uyoy in
the United States: October 2008 vs December 2022

Notes: The figure shows the contours from one quarter ahead bivariate predictive density for the year-on-year change in the unemployment rate and
year-on-year inflation rate for July 2009 and September 2023 in the US. The contours identify 20% 50%, 80% and 90% of the bivariate predictive
density. The area inside the red-dotted rectangle signals year-on-year inflation greater than 4% and changes in the year-on-year unemployment rate
greater than 0.5pp.
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Table 1: Unemployment rate in the EA and the US - peak-to-trough and trough-to-peak changes

Region Peak Trough Months
Peak-to-Trough

Trough Peak Months
Trough-to-Peak

(per month) (per month)

EA

Apr-98 (*) Mar-08 119 -0.03
Mar-08 Jun-09 15 0.16 Jun-09 Sep-11 27 0.03
Sep-11 Mar-13 18 0.10 Mar-13 Dec-19 81 -0.06
Dec-19 Jun-20 6 0.09 Jun-20 Sep-22 (**) 27 -0.05

US

Nov-48 Oct-49 11 0.38 Oct-49 Jul-53 45 -0.12
Jul-53 May-54 10 0.33 May-54 Aug-57 39 -0.05
Aug-57 Apr-58 8 0.41 Apr-58 Apr-60 24 -0.09
Apr-60 Feb-61 10 0.17 Feb-61 Dec-69 106 -0.03
Dec-69 Nov-70 11 0.21 Nov-70 Nov-73 36 -0.03
Nov-73 Mar-75 16 0.23 Mar-75 Jan-80 58 -0.04
Jan-80 Jul-80 6 0.26 Jul-80 Jul-81 12 -0.05
Jul-81 Nov-82 16 0.22 Nov-82 Jul-90 92 -0.06
Jul-90 Mar-91 8 0.16 Mar-91 Mar-01 120 -0.02
Mar-01 Nov-01 8 0.16 Nov-01 Dec-07 73 -0.01
Dec-07 Jun-09 18 0.25 Jun-09 Feb-20 128 -0.05
Feb-20 Apr-20 2 5.64 Apr-20 Sep-22 (**) 29 -0.39

Notes: Peaks and trough dates are taken from the CEPR for the euro area, and the months are adjusted to the end of the quarter announced by
the CEPR as the relevant business cycle date, and from the NBER for the US. (*) our data for the unemployment rate in the euro area starts in
April 1998. It is therefore not a trough, but our earliest comparison to the March 2008 peak. (**) our data stops for both the euro area and the US
in September 2022. This is the latest comparison we have for the latest trough in each region.

Table 2: Bai et al. (2005) skewness statistic

MoM changes QoQ changes YoY changes Level

Euro Area 1.7884∗ 1.704∗ 1.5888 1.3458
US 0.9908 1.0261 1.0165 2.1551∗∗

Notes: Bai et al. (2005) skewness statistic. ∗ indicates rejections of the null hypothesis at 90% CI and ∗∗ indicates rejections of the null hypothesis
at 95% CI.

Table 3: Coefficients in the state equation of the shape parameter λ∆u

Euro area ϕλt−1
ϕPMIt−1

ϕCISSt−1
cλ

0.7314 -0.0200 0.3120 0.3669
[0.5845 0.8526] [−0.0438 0.0043] [−0.3336 1.0671] [0.7180 0.1345]

US ϕλt−1
ϕCFNAIt−1

ϕNFCIt−1
cλ

Full sample 0.7536 -0.0061 0.0046 0.2576
[0.5842 0.8782] [−0.0688 0.0613] [−0.1824 0.2110] [0.0635 0.5155]

Pre-Covid 0.6880 -0.0230 0.0123 0.1753
[0.5367 0.8256] [−0.1605 0.0973] [−0.1824 0.2110] [−0.0116 0.4277]

Notes: The Table reports the posterior median estimates with 85th and 15th credible sets in brackets of the coefficients of the risk factor in the
state equation for the shape parameters of the shocks to the change in the unemployment rate. For the US we report estimates based both on full
sample and pre-Covid.
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A Appendix

A.1 Bai et al. (2005) test for skewness

Under the null hypothesis of no asymmetry Bai et al. (2005) test statistic is:

π̂3 =

√
T µ̂3

s(µ̂3)

d−→ N (0, 1) (8)

where µ̂3 is the sample estimate of the third central moment of the distribution and s(µ̂3) =

(α̂2Γ̂22α̂
′
2)

1
2 α̂2 = [1,−3σ̂2]. σ̂2 is a consistent estimate of the variance σ2 and Γ̂22 is a consistent

estimate of the 2 × 2 sub-matrix of Γ = limT→∞ T E[Z̄Z̄] where Z̄ is the sample mean of Zt,

defined as the deviation of the empirical centered first three moments from the Gaussian’s one,

namely:

Zt =


(Xt − µ)3 − µ3

(Xt − µ)

(Xt − µ)2 − σ2


The long run variance is estimated following Newey et al. (1987).

A.2 TVSSV-VAR with Skew normal shocks

The TVSSV VAR(p) model with Skew Normal shocks is given by:

yt = Π0 +Π1yt−1 + . . .+Πpyt−p +A−1H0.5
t εt (9)

εit ∼ Skew normal(ζit, ωit, λit)

log(hi,t) = log(hi,t−1) + ηi,t ηi,t ∼ N (0, σ2
i,η) (10)

with i = {PMI,∆U,CISS} for the euro area and i = {CFNAI,∆U,NFCI} for the US.

λ∆U,t = ϕ1λ∆U,t−1 + ϕ2xt−1 + ξ∆U,t ξ∆U,t ∼ N (0, σ2
ξ,∆U ) (11)

λi,t = ϕ1λi,t−1 + ξi,t ξit ∼ N (0, σ2
ξ,i) (12)

with i = {PMI,CISS} for the euro area and i = {CFNAI,NFCI} for the US. The Skew

normal (Azzalini 1986) distribution is:
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p(εt|ζ, ω2, λ) =
2

ω
ϕ

(
εt − ζ

ω

)
Φ

(
λ

(
εt − ζ

ω

))
where ϕ(.) and Φ(.) are respectively the probability density function and the cumulative density

function of the Standard Normal. The mean and the variance of εt are given by E[εt] = ζ+ωδ
√

2
π

and var(εt) = ω2
(
1− 2δ2

π

)
. Assuming E[εt] = 0 and var(εt) = 1 implies the following con-

straints on the location and scale parameters ζ = −ωδ
√

2
π and ω2 =

(
1− 2δ2

π

)−1
.

To estimate the TVSSV model we exploit the fact that εt ∼ Skew − Normal(ζ, ω2, λ) has

the following stochastic representation:

εt = ζ + δωvt +
√

(1− δ2)ωzt (13)

where vt
i.i.d∼ Truncated normal[0,∞)(0, 1) zt

i.i.d∼ N (0, 1) and δ = λ√
1+λ2

, with −1 < δ < 1.

Using the stochastic representation in equation (13) for the shocks, we can write the VAR

system as:

yt = Π0 +Π1yt−1 + . . .+Πpyt−p +A−1H0.5
t (ζt +Ωt∆tvt +Ωt(In −∆2

t)
0.5zt) (14)

where:

ζt = [ζ1,t, . . . , ζN,t]
′

Ωt = diag(ω1t . . . ωNt)

∆t = diag(δ1t . . . δNt)

vt = [v1,t, . . . , vN,t]
′ vi,t ∼ TruncatedNormal(0,∞)(0, 1)

zt = [z1,t, . . . , zN,t]
′ zit ∼ N(0, 1).

This representation implies that conditionally on the mixing variables in vt the likelihood is

Gaussian. This allows to resuscitate and adapt many of the closed form formulas for the full

conditional posterior distributions for the parameters of the model from the standard Gaussian

stochastic volatility VAR model (Carriero et al. 2019). It is worth to remark that the diagonal

elements in the vector ζt and in the diagonal matrix Ωt are neither parameters nor latent states

to be estimated, and satisfy the constraints (2) and (3) so that the parameterization of the

shocks is correct. The diagonal elements in ∆t satisfy δit = λit√
1+λ2

it

. The elements in the

diagonal matrix Ht = diag(h1t, . . . , h1N ) and the shape parameters λit are instead latent states
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satisfying the transition equations (10) (11) and (12). For details on the estimation of the model

see Renzetti (2023).

A.3 Priors of the TVSSV-VAR

Table 6 presents the details on the priors for the parameters of the time varying skewness

stochastic volatility model:

Table 6: Priors for the parameters of the TVSSV-VAR model

Parameter Prior

vec(Π) N (vec(µΠ),ωΠ)

aij N (0, 100)
ϕi,1 N (1, θ1)
ϕ2 N (µϕ2 ,Σϕ2)

log(hi0) N (hi0, 100)
λi0 N (0, 10)
σ2
i,ξ InverseGamma(5, 0.16)

σ2
i,η InverseGamma(5, 0.16)

Notes: The table presents the prior distribution of the parameters of the TVSSV-VAR model.

where ωΠ has the Minnesota type (Litterman 1986) prior:

vij,l =


θ1
lθ4

if i = j

σ2
i θ1θ2
σ2
j l

θ4
if i ̸= j

(15)

The elements of vec(µΠ) are equal zero for the coefficients on the cross-equation lags and equal

to one for the coefficients of the own lags. As for the hyper-parameters, we set θ1 = 0.04 θ2 =

0.25 θ3 = 100 θ4 = 2. We estimate σ2
i from univariate AR(12) regressions. For the initial

state of the volatility, the prior mean hi0 where hi,0 is the estimated variance from an AR(4)

model to each series using as sample the first 40 observations. For the Normal prior for the

coefficients on the risk factors in the state equation for the shape parameters of the shocks

to changes in the unemployment rate ϕ2 we assume a mean µϕ2 = [0, . . . , 0]′ and variance

covariance matrix Σϕ2 = diag
(

θ1θ5
σ2
1 l

θ4
, . . . θ1θ5

σ2
J l

θ4

)
with θ5 = 0.1.

A.4 Competing models in the forecasting exercise:

In Section 4.2 we compare the forecasts from the time varying skewness stochastic volatility

VAR model to the forecasts from:
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• A Bayesian VAR with Independent Normal Inverse-Wishart prior.

• A Bayesian VAR with stochastic volatility.

• The two step approach based on quantile regression and Skew-t interpolation by (Adrian

et al. 2019).

A.4.1 Bayesian VAR with Independent Normal Inverse-Wishart prior

The Bayesian VAR with Independent Normal Inverse-Wishart prior is given by:

Y = XΠ+U U ∼ MVN(0,Σ, IT ) (16)

where Y is T ×N , X is T ×k with k = Np+1, Π is k×n , U is T ×N and MVN stands for the

matricvariate normal. The prior for the autoregressive coefficients and the variance covariance

matrix is:

vec(Π) ∼ N (vec(µΠ),ΩΠ) (17)

Σ ∼ IW(S0, v0) (18)

vec(Π) and ΩΠ have the same structure in A.3, and we assume S0 = (T − 2)diag(σ2
1. . . . , σ

2
N )

where we estimate σ2
i from univariate AR(12) regressions v0 = N + 2.

A.4.2 Bayesian VAR with stochastic volatility

The BVAR with SV is given by:

yt = Π0 +Π1yt−1 + . . .+Πpyt−p +A−1H0.5
t εt (19)

εit ∼ N (0, 1)

where A−1 is a lower triangular matrix with ones on the main diagonal, Ht = diag(h1,t, . . . , hi,t)

is the diagonal matrix collecting the volatilities of the shocks and εt is a column vector collecting

the Normal shocks. The log-volatilities evolve according to:

log(hi,t) = log(hi,t−1) + ηi,t ηi,t ∼ N (0, σ2
i,η) (20)
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with i = {PMI,∆U,CISS} for the euro area and i = {CFNAI,∆U,NFCI}. As for the prior

for the free elements in A−1 and vec(Π) and ΩΠ, have the same structure in A.3 as well we

assume the same Inverse Gamma prior for σ2
i,η.

A.4.3 Quantile regression and Skew-t interpolation

Following Adrian et al. (2019) we adopt a two-step procedure to estimate the entire predictive

distribution of changes in the unemployment rate as a function of real and financial risk factors.

In the first step, we use predictive quantile regression to estimate the quantiles of the conditional

distribution, namely:

Q̂∆Ut+h|It(τ) = β̂τ
1∆Ut + β̂τ

2realriskt + β̂τ
3financialriskt

for τ = 0.05, . . . , 0.95 realriskt = PMI and financialriskt = CISS for the euro area and

realriskt = CFNAI and financialriskt = NFCI for the US. Then, in the second step, the

estimated quantiles we interpolate using a flexible Skew-t distribution, so as to obtain a complete

predictive density for the dependent variable.

A.5 Forecasts metrics

Defining y the realization of the series to predict, f(.) the density forecast and F (.) corresponding

the cumulative distribution, CRPS are defined as:

CRPS(f, y) =

∫ ∞

−∞
PS(F (z),1{y ≤ z})dz =

∫ 1

0
QSα(F

−1(α), y)dα (21)

where

PS(F (z),1{y ≤ z}) = (F (z)− 1{y ≤ z})2 (22)

is the Brier probability score and

QSα(F
−1(α), y) = 2(1{y ≤ F−1(α)} − α)(F−1(α)− y) (23)

is the Quantile Score. The Quantile Weighted CRPS are computed as:

twCRPS =

∫ ∞

−∞
PS(F (z),1{y ≤ z})2w(z)dz =

∫ 1

0
QSα(F

−1(α), y)v(α)dα (24)
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where v(α) = (1−α)2 assigns higher weights to the lower quantiles of the distribution function.
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A.6 Additional figures

Figure 21: Residuals from autoregressive fit to changes in the unemployment rate in the euro
area distinguishing recessions form normal times

Notes: The figure shows the estimated distribution of the residuals of an autoregressive model for the changes in the unemployment rate in the euro
area for recession periods, identified by the EABCN and for normal times.

Figure 22: Residuals from autoregressive fit to changes in the unemployment rate in the US
distinguishing recessions form normal times

Notes: The figure shows the estimated distribution of the residuals of an autoregressive model for the changes in the unemployment rate in the US
for recession periods, identified by the NBER and for normal times.
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Figure 23: Squared and cubed residuals from autoregressive fit to changes in the unemployment
rate in the euro area

Notes: The figure shows the time series of the squared and cubed residuals from autoregressive model to changes in the unemployment rate in the
euro area. The shadow bands indicate the EACN recessions periods.

Figure 24: Residuals from autoregressive fit to changes in the unemployment rate in the US
distinguishing recessions form normal times

Notes: The figure shows the time series of the squared and cubed residuals from autoregressive model to changes in the unemployment rate in the
US. The shadow bands indicate the NBER recessions periods.

ECB Working Paper Series No 2840 51



Figure 25: Standard normal and Skew normal distributions

Notes: The figure shows the Standard normal distribution together with the Skew normal distribution with shape parameter λ = 4 re-parameterized
to have zero mean and unit variance.

A.7 Additional tables

Table 7: Percentiles of Ut+h − Ut

Percentiles
Euro Area United States

h = 1 h = 3 h = 12 h = 1 h = 3 h = 12

10% -0.11 -0.28 -0.94 -0.23 -0.43 -1.12

15% -0.09 -0.25 -0.89 -0.18 -0.33 -0.91

20% -0.08 -0.23 -0.84 -0.15 -0.28 -0.81

25% -0.07 -0.20 -0.80 -0.12 -0.24 -0.69

50% -0.03 -0.09 -0.36 -0.01 -0.06 -0.29

75% 0.03 0.06 0.34 0.10 0.13 0.38

80% 0.05 0.13 0.51 0.13 0.20 0.83

85% 0.07 0.18 0.70 0.17 0.33 1.27

Notes: The table shows the percentiles of the distribution of the month on month, quarter on quarter and year on year
changes in the unemployment rate for the euro area and the United States.
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