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Abstract

We develop early warning models for financial crisis prediction by applying machine

learning techniques to macrofinancial data for 17 countries over 1870–2016. Most nonlin-

ear machine learning models outperform logistic regression in out-of-sample predictions and

forecasting. We identify economic drivers of our machine learning models using a novel

framework based on Shapley values, uncovering nonlinear relationships between the predic-

tors and crisis risk. Throughout, the most important predictors are credit growth and the

slope of the yield curve, both domestically and globally. A flat or inverted yield curve is of

most concern when nominal interest rates are low and credit growth is high.

Keywords: machine learning; financial stability; financial crises; credit growth;

yield curve; Shapley values.
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Non-technical summary

Financial crises are recurrent events in economic history and have large economic and social

costs. While economic policy makers might not be able to prevent financial crises altogether,

spotting their warning signs in advance would at least allow macroprudential authorities to

implement policy measures to mitigate their likelihood and severity. But due to their rare

nature, predicting crises is challenging.

This paper uses a diverse set of models from the machine learning literature to try to predict

financial crises up to two years ahead. This would give policy makers time to react —for example

by activating macroprudential policies such as countercyclical capital buffers—should models

predict a high chance of a crisis. Machine learning offers a toolbox of flexible models. They

are novel in economics-related applications and have been shown to be more accurate than

standard benchmark econometric models in many prediction tasks, especially in cases where

many different factors play a role, and the relationship between these factors is complex.

We exploit a long-run dataset spanning more than 140 years. This includes annual macroe-

conomic and financial data for 17 advanced economies alongside an indicator signalling whether

a country experienced a financial crisis in a given year. Comparing different modelling ap-

proaches, we find that most machine learning models are more accurate in predicting financial

crises than a standard logistic regression model, which is often used as the benchmark model for

financial crisis prediction. The results are economically significant and robust to a wide range

of variations in the modelling setup.

To illustrate the difference in performance between the best performing machine learning

model, in our case extremely randomised trees (a collection of hundreds of decision trees), and

a logistic regression, we calibrate both models to ensure that they correctly identify 80% of

crises, i.e. we set the proportion of crises we aim to predict correctly. We then compare the

false alarm rate across models, i.e. the proportion of times when the model signals a crisis which

does not subsequently happen—this could be taken as a measure of the cost of unnecessary

policy interventions. Using the best machine learning model reduces the false alarm rate from

31% to 18%. This highlights the potential large gains from using the new models we develop

to inform macroprudential policy decisions. One practical issue around the use of machine

learning models is, however, their opacity. Compared to simpler linear models, it is typically

more difficult to understand what variables drive their predictions. This is an important issue for

ECB Working Paper Series No 2614 / November 2021 2



policy makers who need to be able to explain the economic rationale for their decisions clearly

and transparently. We tackle this black box critique of machine learning models by applying a

technique from cooperative game theory based on ‘Shapley values’. This allows us to decompose

the predicted crisis probability into the contributions coming from individual economic variables,

as measured by their Shapley values. These values can then be used to rank variables according

to their importance for the overall prediction. Rapid domestic and global credit growth both

emerge as important predictors of financial crises. There is also a materially elevated crisis

risk when yield curves have a negative slope, either domestically or globally, with the cost of

short-term borrowing being relatively high compared to the cost of long-term borrowing. This is

true even after controlling for the well-established ability of the yield curve in helping to predict

recessions.

The Shapley values approach also allows us to model nonlinear relationships and interactions

among the variables. This greater flexibility often explains the better performance of machine

learning models relative to their linear econometric counterparts. We find a strong nonlinear role

for credit growth, particularly globally. This suggests that sustained credit growth is typically

benign below a threshold of around 3% per year, but that the likelihood of a crisis increases

sharply as credit growth starts to materially exceed that amount. We also find that a flat or

inverted yield curve is of most concern when nominal interest rates are low and credit growth is

high, which may be reflective of increased risk-taking by financial market participants that can

often be observed prior to financial crises.

Taken together, our results suggest that strong credit growth in a (globally) low-interest rate

environment may point towards a build-up of vulnerabilities that could make a country more

susceptible to financial crises in the future. In such zones of heightened vulnerability, it may be

valuable to deploy macroprudential policies to help avoid or at least reduce the consequences of

financial crises.
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1 Introduction

Financial crises have huge economic and social costs (Hoggarth et al., 2002; Ollivaud and Turner,

2015; Laeven and Valencia, 2018; Aikman et al., 2018). Spotting their warning signs sufficiently

early is therefore of great importance for policy makers. Doing so can facilitate the timely

activation of countercyclical macroprudential policies, and reduce the likelihood and severity

of financial crises in the face of rising risks (Giese et al., 2013; Cerutti et al., 2017; Akinci and

Olmstead-Rumsey, 2018). But identifying a reliable set of early warning predictors is challenging

for several reasons. First, there are a relatively limited set of observed crises, which makes robust

modelling difficult. Second, crisis indicators often only flash red when it is already too late to

intervene. Third, it can be challenging to distil complicated early warning models into simple and

transparent indicators that can help guide timely intervention by macroprudential authorities.

Finally, economic and financial systems are subject to inherent unpredictability and ‘Knightian’

uncertainty which means that some events are almost certainly unknowable in advance (Aikman

et al., 2014), as the economic fallout from Covid-19 exemplifies. While this last point means

that it will never be possible to completely pin down the likelihood of a systemic crisis occurring

over the next year, it is still hugely valuable to identify what developments might signal that a

financial system could be much more vulnerable to a crisis in the near future.

This paper uses machine learning models to tackle these issues. Our best performing models

are clearly capable of predicting most financial crises well in advance. They also correctly predict

the global financial crisis of 2007–2008, giving differentiated signals between countries that reflect

different economic realities and outcomes. Credit growth and the slope of the yield curve, both

domestically and globally, are particularly robust indicators. While these predictors should not

necessarily be seen as triggers for a financial crisis, they can make a country significantly more

vulnerable to financial crises in the face of shocks. So they can be used as important signals of

growing vulnerabilities which can guide the implementation of macroprudential policies aimed

at reducing the likelihood of a crisis or dampening its negative consequences.

Despite the small sample of crisis observations, we find that most machine learning models

generally outperform a logistic regression in both the out-of-sample prediction and the forecast-

ing of financial crises on a multi-year horizon. Due to their greater flexibility, machine learning

models have the advantage that they may uncover important nonlinear relationships and vari-

able interactions which may be difficult to identify using classical techniques. As financial crises
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are rare and extreme events that are likely to exhibit unknown nonlinear dependencies prior

to their crystallisation (Alessi and Detken, 2018), such methods are particularly well suited for

developing a reliable early warning system.

To the best of our knowledge, our paper is the first to provide a detailed analysis of how

black box machine learning models predict financial crises by decomposing their predictions

into the contributions of individual variables using the Shapley value framework (Strumbelj and

Kononenko, 2010; Joseph, 2020). This approach allows us both to identify the key economic

drivers of our models and to test those statistically. It also helps to tackle a key challenge

faced by policy makers in using machine learning models to inform their decisions, because it

provides narratives that can be used to justify policy actions which may be partially based on

such models. Such economic reasoning is important in reaching a rounded assessment which

integrates insights from machine learning models with other models, data, market intelligence,

and judgement. And it is essential for transparency and accountability, given that public policy

makers need to explain the rationale for their decisions and cannot simply point to black box

models to justify their interventions.

In our baseline setup, we aim to predict financial crises one to two years in advance. We

exploit the Macrohistory Database by Jordà et al. (2017), which covers macroeconomic and

financial variables from 17 advanced economies over more than 140 years and contains a binary

financial crisis variable. We compare a logistic regression with the out-of-sample performance

of a range of machine learning models: decision trees, random forests, extremely randomised

trees, support vector machines (SVM), and artificial neural networks. We find that, with the

exception of individual decision trees, all machine learning models have strong predictive power

and outperform the logistic regression.

Investigating the drivers of our models, we find that credit growth and the slope of the yield

curve are the most important predictors for financial crises across a diverse set of models. While

the importance of domestic credit growth is well known in the literature (Borio and Lowe, 2002;

Drehmann et al., 2011; Schularick and Taylor, 2012; Aikman et al., 2013; Jordà et al., 2013,

2015b; Giese et al., 2014), the role of the yield curve has been far less explored and usually

only been studied in the context of predicting recessions rather than financial crises. We find

that the flatter or more inverted the domestic yield curve is, the higher the chance of a crisis,

even after controlling for recessions. This could be linked to compressed net interest margins.

But since this result is stronger when nominal yields are low, it may also reflect the search for
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yield and increased risk-taking that can often be observed prior to financial crises. Both credit

growth and the yield curve slope are also important predictors at the global level, albeit with

some interplay with the time period chosen for global credit growth and with recessions for the

global yield curve slope. Our results also indicate that stock prices, money and the current

account have lower overall predictive power when controlling for other factors. House price, by

contrast, slightly do improve model performance in the post-1945 period, but not robustly, i.e.

this may be an important indicator for some countries at certain times but not throughout the

full sample. More generally, we also leverage our long sample to explore how the importance of

different variables has varied over time.

The strong predictive power of our best performing machine learning models may partially

be attributed to the simple and intuitive nonlinear relationships and interactions that they

uncover. These help to identify zones of particular vulnerability to future financial crises, in a

similar spirit to recent work by Greenwood et al. (2020) and Richter et al. (2021), though we find

a much stronger role for the yield curve, which they do not consider, than asset prices, which

we find to be less important than they do. We find that crisis probability increases materially

at high levels of global credit growth but this variable has nearly no effect at low or medium

levels. Similarly, interactions seem to be important—particularly between global and domestic

variables. For example, many crises fall into an environment of strong domestic credit growth

and a globally flat or inverted yield curve.

Our paper develops from the extensive literature on early warning systems for crisis predic-

tion that applies classical regression techniques or classifies leading indicators in a binary way

according to whether they correctly signalled crises or generated false alarms (see e.g. Kamin-

sky and Reinhart (1999); Bussiere and Fratzscher (2006); Drehmann et al. (2011); Frankel and

Saravelos (2012); Schularick and Taylor (2012); Drehmann and Juselius (2014); Babeckỳ et al.

(2014); Giese et al. (2014); Danielsson et al. (2018)). This literature typically identified domestic

private credit or credit-to-GDP growth and indebtedness as key predictors of financial crises,

with more recent work (Alessi and Detken, 2011; Duca and Peltonen, 2013; Cesa-Bianchi et al.,

2019) also highlighting the importance of global credit growth in predicting crisis after 1970.

Our results are in line with these findings.

The domestic yield curve is a well-established leading indicator for economic recessions (Es-

trella and Hardouvelis, 1991; Wright, 2006; Rudebusch and Williams, 2009; De Backer et al.,

2019) and some have also explored the effect of the US yield curve on growth in other countries
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(Plosser and Rouwenhorst, 1994). But, only a few studies have have linked it empirically to the

risk of financial crises (Babeckỳ et al., 2014; Joy et al., 2017; Vermeulen et al., 2015) and these

studies have not discussed this result in detail or examined the role of the yield curve on the

global level. At the same time, our work is compatible with several theoretical models which

investigate the relationships between nominal risk-free returns, risk taking, credit and finan-

cial stability (Aikman et al., 2015; Martinez-Miera and Repullo, 2017; Coimbra and Rey, 2017;

Korinek and Novak, 2017). These models tend to highlight the importance of credit booms,

particularly in a low interest rate environment, counter-cyclical risk premia and search-for-yield

behaviour prior to financial crises.

A more recent line of work has started to use machine learning techniques for financial crisis

prediction. Several studies apply random forests, a well-established machine learning model

that uses decision trees. For example, Alessi and Detken (2018) employ them to predict banking

crises in a quarterly dataset spanning 1970–2012 across EU countries, while Joy et al. (2017) use

them to predict banking and currency crises in 36 advanced economies between 1970 and 2010

and Ward (2017) uses them to predict financial crises in the long-run Macrohistory Database

and two post-1970 datasets.1 Other machine learning models have also been used to predict

financial crises. Adaboost, with decision trees as its base model, was shown to outperform logistic

regression in forecasting financial crises in 100 advanced and emerging economies between 1970

and 2017 (Casabianca et al., 2019). Tölö (2019) shows that recurrent neural networks yield

better early warning models than both ordinary neural networks and logistic regression in the

Macrohistory database. And Fouliard et al. (2019) combine several predictive models, including

regression and decision trees, to forecast financial crises in seven countries between 1985 and

2018. While all these of studies find that machine learning methods generally outperform a

regression approach, Beutel et al. (2018) reach the opposite conclusion. They find that logistic

regression consistently outperforms a set of machine learning models in forecasting financial

crises based on quarterly post-1970 data.

A big advantage of machine learning models relative to standard regression approaches is

their ability to model nonlinearities and interactions. The role of nonlinearities is also explored

in the GDP-at-risk literature by modelling predictors of GDP growth in a quantile regression

setting (Adrian et al., 2019; Aikman et al., 2021). This line of research finds that financial

1Other examples of tree applications in economics are Manasse and Roubini (2009) and Savona and Vezzoli
(2015) for sovereign crises, and Duttagupta and Cashin (2011) for banking crises in emerging and developing
countries.
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conditions can affect the downside risk of GDP growth. While Adrian et al. (2019) consider

a financial conditions index, making it difficult to distinguish which financial components are

drivers of tail risk, Aikman et al. (2021) find that high credit growth plays an important role for

the 3-5 year ahead downside risk of GDP, in line with our results. However, our paper focusses

exclusively on financial crises rather than the worst potential GDP outcomes, which could be

brought about by a range of factors that are not financial crisis related (e.g. a global pandemic).

Machine learning techniques also account for nonlinear dynamics in a more general way than

quantile regressions, which provide linear estimates for different pre-specified quantiles of the

GDP distribution.

We contribute to the above literature in four main ways. First, we believe that our study is

the first to compare a diverse set of machine learning models on a long-run dataset of more than

140 years in both out-of-sample cross-validation and forecasting testing. Second, we are the first

to tackle the black box critique of machine learning models for crisis prediction by identifying the

key economic drivers of our models within a well-defined framework. Third, we uncover novel

economic relationships which speak to the drivers of financial crises. In particular, we find that

the domestic slope of the yield curve is an important predictor for crises even after controlling

for recessions and examine potential reasons for this in detail. We also identify the importance

of yield curves globally for financial crisis risk. Fourth, we identify important interactions and

nonlinearities of key variables. We find particularly strong relationships between global factors

and domestic indicators like the global slope of the yield curve and domestic credit.

The remainder of the paper is structured as follows. Section 2 describes the dataset, reviews

the literature on those variables that we choose as predictors, and presents the fitted logistic

regression. Section 3 outlines the methodology and provides a brief description of the different

machine learning models applied and the Shapley value framework. Section 4 compares the

predictive performance of all models. Section 5 investigates the importance of the predictors

using Shapley values. Section 6 analyses the economic interpretation of our results in more

detail, focussing particular on the role of the yield curve and its interactions with credit growth,

and the changing importance of variables across time. Section 7 concludes.

ECB Working Paper Series No 2614 / November 2021 8



2 Dataset, variable selection, and preliminary analysis

2.1 The financial crisis dataset

Financial crises are rare events. While there are a handful of truly global financial crises such as

the Great Depression and the Global Financial Crisis of 2007–08, the majority of crises mostly

occur in a single country or a small cluster of countries. Given the infrequency of financial crises,

we exploit the longest cross-country dataset available.

The Jordà-Schularick-Taylor Macrohistory Database (Jordà et al., 2017) contains annual

macroeconomic and financial measures from 17 developed countries between 1870 and 2016

(see Figure I).2 For each of the 2499 country-year observations, the dataset contains a binary

variable indicating whether (n=90) or not (n=2409) the country suffered from a financial crisis

in a particular year. The authors define financial crises as “events during which a country’s

banking sector experiences bank runs, sharp increases in default rates accompanied by large

losses of capital that result in public intervention, bankruptcy, or forced merger of financial

institutions.” The crisis variable synthesises several previous databases (Bordo et al., 2001;

Laeven and Valencia, 2008; Reinhart and Rogoff, 2009; Cecchetti et al., 2009) and has been

confirmed by experts for the respective countries (Schularick and Taylor, 2012).

Since we wish to predict crises ahead of time, we set our binary outcome variable to positive

values for one and two years before the beginning of the crisis. Like other studies on crisis

prediction (Beutel et al., 2018; Alessi and Detken, 2018; Casabianca et al., 2019), we exclude

the actual year of the crisis and the following four years from the analysis to avoid post-crisis

bias (Bussiere and Fratzscher, 2006). This avoids placing years where the economy is healthy in

the same class as post-crisis years, where the economy is recovering and still affected by crisis

dynamics. Mixing these economic conditions would make it difficult for a prediction model to

identify signals that indicate the built-up to crisis, which is our prime interest. For the same

reason, we also exclude all observations between 1933 and 1939, the later years of the Great

Depression, which is generally considered to have lasted from 1929 to 1939. (Bernstein, 1987;

Gordon and Krenn, 2010). The two world wars (1914–1918, 1939–1945) are also excluded. To

ensure full coverage, we also exclude all observations with any missing values of the predictors,

2We obtained the third version of this dataset in January 2019 from http://www.macrohistory.net. Daniels-
son et al. (2018) use a larger dataset that is both longer (211 years) and contains more countries (Reinhart and
Rogoff, 2009). However, this dataset only contains few predictive variables (stock market, inflation, GDP, public
debt, and political competition) making it unsuitable for our analysis.
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which particularly restricts the sample in the 19th century. Figure I summarises these exclusions

and Table A.I in the appendix shows the proportion of missing observations for each predictor—

sine missing observations on stock prices drive a relatively high proportion of our exclusions, we

omit this predictor variable in one of our robustness checks.

After these exclusions, 1249 observations remain from the original dataset and constitute our

baseline dataset. Of these observations, 95 have a positive class value indicating the build-up

phase to 49 distinct crises.
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Figure I: Observations in the dataset. Green bars show non-crisis observations, red bars show
the target 1–2 years before crisis. All excluded observations are highlighted by the thick black

lines. We exclude: (i) the actual crisis observations and the following four years (grey); (ii)
observations of both world wars and the second half of the great depression (brown); and (iii)

observations with missing values of the predictors (green hatched). Red hatched bars show
target observations excluded for any of these three reasons.

2.2 Explanatory variables and related literature

We treat the prediction of crises as a classification problem and model the ⟨country, year⟩ pairs

as independent observations. We explore the following predictors in our baseline analysis (see

also Table I for a summary): the slope of the yield curve (difference of short and long-term
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interest rates3), credit (loans to the non-financial private sector), stock prices, the debt service

ratio (credit × long-term interest rate over GDP), consumption, investment, the current account,

public debt, broad money, and CPI. The slope of the yield curve is left in levels, while CPI,

stock prices, and real consumption per capita are transformed into percentage growth rates of the

given indices. All other variables, i.e. credit, money, public debt, debt servicing, investment, and

the current account, are differences of GDP-ratios. Variable transformations address potential

issues of comparability and non-stationarity.

In addition to these 10 domestic variables, we define two global variables, namely global

credit growth and the global slope of the yield curve. They are computed for a country-year

pair ⟨c, y⟩ by the mean credit to GDP growth (mean slope of the yield curve) in all countries

except c in year y.4 Correlation analysis suggests that the global variables differ materially from

domestic measures of credit and the slope of the yield curve in individual countries. The median

Spearman correlation of global and domestic credit growth across countries is 0.28 (range: -

0.10 to 0.60). Even the US, which is often said to drive the global financial cycle, only shows a

slightly above average correlation of 0.31. For the global slope of the yield curve, the correlations

between the global and domestic measures are a bit higher, with a median of 0.51 (range: -0.04

to 0.77) across countries and the US correlation being 0.46. In addition, the median pairwise

correlation between individual countries is 0.10 (range: -0.57 to 0.58) and 0.29 (range: -0.35

to 0.79) for credit growth and the slope of the yield curve, respectively. All of this suggests

that there are strong differences and idiosyncrasies between the domestic and global variables,

highlighting the value of considering them both in our analysis.

Variable selection is based on the criteria of data availability, ex-ante considerations of eco-

nomic mechanisms and the related literature. Table I also lists a small number of additional

variables that we consider in various extensions and robustness checks with respect to the main

specification. In what follows, we briefly discuss the potential economic relevance of each of our

predictors with reference to the relevant literature.

Credit growth has been found to be a crucial predictor of financial crises (Borio and Lowe,

2002; Drehmann et al., 2011; Schularick and Taylor, 2012; Aikman et al., 2013). High credit

growth often reflects a period of excessive risk taking, which can subsequently lead to financial

instability (Minsky, 1977). Indeed, Aliber and Kindleberger (2015) describes financial crises as

3Short-term rates are either risk-free or market-based rates depending on data availability. Our results are
robust to the type of short-term rates used. Long-term rates refer to long-term government debt.

4Appendix B.2 discusses the computation of the global variables in detail.
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“credit booms gone wrong”. Financial accelerator effects (Bernanke and Blinder, 1992) can even

mean that a rather small credit bubble may be very detrimental if a negative spiral amplifies an

initial shock. And, collateral constraints may serve as a further amplifier (Kiyotaki and Moore,

1997; Bernanke et al., 1999).

Beyond domestic credit growth, several studies have identified the importance of global credit

growth. Financial crises often occur on an international scale and may reflect global financial

cycles (Rey, 2015), or be driven by cross-country spillovers rather than only domestic imbalances.

For example, Cesa-Bianchi et al. (2019) find an increasing correlation of credit growth across

countries over time and show that global credit growth is an even stronger predictor for financial

crises than domestic credit. Similarly, Alessi and Detken (2011) and Duca and Peltonen (2013)

show that the global credit gap is an effective early warning signal.

Rising asset prices—including equity and house prices—are also often associated with pre-

crisis periods (Aliber and Kindleberger, 2015; Reinhart and Rogoff, 2008). In particular, rapid

rises of asset prices could indicate the formation of a bubble. Greenwood et al. (2020) show that

asset price booms are highly predictive of crises when accompanied by high credit growth.

The slope of the yield curve, i.e. the difference between the long and short-term interest rate,

is often seen as a strong predictor of an impending economic recession (Estrella and Hardouvelis,

1991; Wright, 2006), especially of a longer horizon of 12–18 months (Rudebusch and Williams,

2009; Liu and Moench, 2016; Croushore and Marsten, 2016). But while some early warning

models for financial crises have identified the slope of the yield curve as an important predictor

of financial crises (Babeckỳ et al., 2014; Joy et al., 2017; Vermeulen et al., 2015), they have not

explored the drivers of its predictive power in detail.

The yield curve reflects expectations of the future path of short-term interest rates, as well

as a risk premium (i.e. the term premium) for holding an asset for a longer duration. In normal

times, the slope is positive, which means that long-term interest rates are higher than short-term

rates. But there are two distinct reasons why a flat or negative sloping yield curve might be

predictive of financial crises, separate from the possible signal on the macroeconomic outlook.

First, for a given macroeconomic environment, a flatter yield curve tends to be associated

with lower net interest margins and weaker banking sector profitability (Adrian et al., 2010;

Borio et al., 2017). This may potentially directly affect the resilience of the banking sector. It

could also lead to a contraction in credit supply with implications for real economic activity.

If these effects are severe enough, the slope of the yield curve might be a useful predictor for
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financial crises.

Second, a flat or inverted yield curve may often be associated with low term premia. In

such an environment, investors might have to search for riskier investment, rather than longer

maturity, to achieve higher absolute returns, and they may not be properly compensated for

their increased risk exposure. For example, Coleman et al. (2008) find that house prices in the

United States rose with the flattening of the yield curve prior to the global crisis of 2007–2008.

They suggest (p. 286), that “the hunger for spread during this period of a flat yield curve could

have been fuelling sub-prime and other alternative mortgage activity”. Such a system-wide

build-up of under-priced risk leaves the financial system highly exposed to a sharp correction

which may result in a crisis. In this regard, the levels of short and long-term interest rates may

be important, either in absolute terms or relative to the natural rate of interest. For instance,

low nominal interest rates may also drive excessive risk taking in the financial system as banks

and other intermediaries search for yield (Taylor, 2009; Adrian and Shin, 2010; Borio and Zhu,

2012) and this may well be the case even when equilibrium interest rates are low, for example due

to fixed nominal return targets among investors. While we assess the importance of the level of

short and long-term interest rates in more detail later in the paper, we do not incorporate them

into the baseline dataset to avoid a direct linear dependency of the yield curve slope and the

interest rates, and we are unable to consider their levels relative to the natural rate of interest

due to data limitations.

Beyond the domestic slope, we also test a global slope indicator. Several studies have shown

strong dependencies of interest rates across countries (Frankel et al., 2004; Obstfeld et al., 2005).

For instance, Plosser and Rouwenhorst (1994) show that the US yield curve predicts growth in

Germany and the UK. Diebold et al. (2008) and Abbritti et al. (2018) have found a systematic

global factor of the yield curve. At a global level, a flattening of the yield curve could point

towards a global economic slowdown, which could be a likely trigger for existing financial vulner-

abilities. It could also precipitate weaker profitability for banks operating globally. Or, it could

be associated with collectively underestimated risk premia and/or search for yield behaviour in

line with the views of shared narratives in global financial markets (Shiller, 2017; Gennaioli and

Shleifer, 2018).

The debt service ratio has also been identified as a good early warning indicator (Drehmann

and Juselius, 2014). It measures interest payments relative to income. This can provide a gauge

of how overextended borrowers are: the higher the debt service ratio, the more vulnerable bor-
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rowers are to falls in their incomes or increases in the interest rate. Overextension in borrowing

could result in an increased rate of defaults, a loss in consumption smoothing capabilities, or

a lack of new investment. The downside of our simplistic debt service ratio measure (credit

× long-term interest rate over GDP), which is driven by data availability, is that it does not

capture short-term lending rates, capital repayments, or the maturity structure of the debt, all

of which may also be important.

We also explore the potential role of the current account. Current account imbalances have

often been found to be a strong driver of crises due to capital inflows pushing down interest rates

and thus encouraging excessive risk-taking behaviour potentially financed by flightly funding

(Reinhart and Rogoff, 2008; Bernanke, 2009; King, 2010). To account for crises which could

be caused by fiscal vulnerabilities we include public debt. Finally, we also control for general

macroeconomic conditions which could trigger financial crises by including real consumption per

capita, investment, the consumer price index (CPI), and money supply.

2.3 Univariate analysis and the logistic regression model

Before we use machine learning to predict crises out-of-sample, we conduct two preliminary

analyses. First, to obtain a quick sense of the potential importance of the explanatory variables,

we compare their mean values shortly before the crises and during normal economic conditions

in Table I. A t-test confirms that there are significant differences (p < 0.05) in nearly all of the

variables.

Second, we fit a simple logistic regression model to our dataset. To better compare the pre-

dictive power of the individual variables, we standardise them in this and all following regression

analyses such that they have a mean of 0 and a standard deviation of 1.5

We include the 12 variables of our baseline dataset (Table I) as regressors, focussing par-

ticularly on domestic and global credit growth and the yield curve slopes. The first model in

Table II shows that domestic credit growth is an important predictor for financial crises even

after controlling for all covariates apart from global credit and yield curve slopes. This is in line

with the literature—for example Schularick and Taylor (2012) found that a 2-year lag of credit

growth is highly predictive with a standardised regression coefficient of 0.50.

The second specification adds global credit to the model. We find that this variable obtains

5This is equivalent to the standardisation of the regression coefficients suggested by Agresti (1996) and rec-
ommended over other approaches by Menard (2004).
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(1) (2) (3) (4)
Baseline specification

Domestic credit 0.420 0.360 0.362 0.426
(0.127) (0.128) (0.135) (0.137)

Global credit 0.560 0.668 0.668
(0.117) (0.126) (0.127)

Domestic slope −0.786 −0.581
(0.131) (0.144)

Global slope −0.613
(0.151)

CPI −0.509 −0.561 −0.414 −0.238
(0.157) (0.163) (0.167) (0.170)

Broad money 0.124 0.136 −0.016 0.036
(0.138) (0.145) (0.154) (0.155)

Stock market 0.080 0.071 −0.093 −0.126
(0.148) (0.153) (0.158) (0.167)

Consumption −0.469 −0.448 −0.484 −0.418
(0.130) (0.131) (0.136) (0.139)

Public debt −0.044 −0.084 −0.055 −0.026
(0.132) (0.139) (0.134) (0.134)

Investment 0.322 0.306 0.379 0.316
(0.121) (0.123) (0.131) (0.131)

Current account −0.166 −0.140 −0.083 −0.084
(0.126) (0.130) (0.131) (0.133)

Debt service ratio 0.615 0.528 0.355 0.158
(0.150) (0.159) (0.166) (0.168)

Observations 1,249 1,249 1,249 1,249
Log Likelihood -287.997 -272.134 -257.605 -248.885
Akaike Inf. Crit. 595.994 566.268 539.211 523.769
Area under the curve 0.756 0.785 0.836 0.852

Table II: Logistic regression models fitted to all data points. The outcome variable is our
crisis indicator, which is set to positive one and two years before an actual crisis. The standard

errors of the regression weights are shown in parentheses.
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a higher weight than domestic credit, in line with Cesa-Bianchi et al. (2019).6

Next, we add the slope of the yield curve. Its weight is negative, indicating that a negative

(or small positive) slope corresponds to a higher estimated probability of crisis. Adding the

global slope in Model 4, the weight of the domestic slope decreases but both remain important

and statistically significant as do the credit variables (p < 0.01 for all four variables).7 But the

significance of CPI and the debt service ratio both drop out when adding the global slope to

the model. Likelihood ratio tests confirm that each increment from model 1 to 4 improves the

goodness of fit of the models significantly (p < 0.001).

3 Machine learning methodology

The regression (4) in Table II is easy to interpret but does not automatically account for non-

linearities and interactions, which are both likely to be relevant prior to financial crises. For

example, Cesa-Bianchi et al. (2019) find a significant quadratic association between global credit

and financial crises, while Alessi and Detken (2018) observe a significant interaction between

domestic and global credit growth. To account for nonlinearities and interactions in a logistic

regression, the modeller explicitly needs to add polynomial or interaction terms to the model.

Choosing the right terms is challenging; choosing many terms is problematic because it re-

duces the stability of the model and the statistical power of finding an effect. We address this

shortcoming by using machine learning models that are capable of learning nonlinearities and

interactions from the data without the need to specify them explicitly.

Theoretical (Wolpert et al., 1997) and empirical (Fernández-Delgado et al., 2014) evidence

suggests that different machine learning models work well for different prediction problems. As

it is challenging to deduce a priori from the characteristics of the data which model will perform

well on a problem, we employ a range of diverse machine learning models, as summarised in

Section 3.1.

Fitting a model to the data does not tell us how well it fares in prediction, as (in-sample)

fitting accuracy is in most cases higher than (out-of-sample) prediction accuracy. This is true

for linear regression but the discrepancy is often more pronounced for flexible machine learning

models which may fit perfectly to data even though they may perform poorly in out-of-sample

6These two variables have a correlation of 0.25 and an analysis of multicollinearity across all variables does
not indicate problematic levels.

7Collinearity between both yield curve variables again does not indicate problematic levels.
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predictions. We adapt an experimental procedure to avoid overfitting, which allows for extensive

out-of-sample tests (Section 3.2).

Finally, Section 3.3 introduces the novel framework based on Shapley values which aims

to address the black box critique of machine learning models and identify the contributions

of individual predictors. This section also explains Shapley regressions (Joseph, 2020) through

which we are able to determine whether or not a predictor makes a statistically significant

contribution to the accuracy of the model.

3.1 Machine learning models

Let f be a prediction model ŷ = f(X), where Xn×k is the predictor matrix containing n ob-

servations on each of the k variables and ŷ ∈ [0,1] is the predicted probability of a crisis. The

observed class label for each observation is denoted by y ∈ {0,1}, where 1 marks the pre-crisis

target years, one and two years before an actual crisis in our baseline approach. It is referred to

as the positive class. The label 0 indicates no crisis and is referred to as the negative class.

We compare a diverse set of machine learning classification algorithms ranging from simpler,

more transparent models such as decision trees to more complex approaches such as random

forests and neural networks. In what follows, we only provide a high level, non-technical expla-

nation of the models we use (see Appendix A for implementation details of the algorithms).

Decision trees

A decision tree successively splits the data into subsets by testing a single predictor at each node

(e.g. Credit growth > 1%). Starting at the root node of the tree, all observations are divided

into two child nodes, one for which the test in the node is true and one for which it is false.

This process is recursively repeated in the respective child nodes. Each test is determined by

iterating through all predictors and possible split points choosing the one that best separates

the observations of the positive and negative class in that node. The nodes that are not split

any further make predictions according to the class of the observations that fall into the node

during training. For example, if nearly all observations in the node are in the positive class, this

node predicts the positive class with high probability. Decision trees are very flexible models.

However, the bigger a tree grows, the less likely it will generalise well to out-of-sample data.

Big trees tend to fit well to the specific observations of a data sample and therefore often
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perform substantially worse on a new set of observations drawn from the same population. This

phenomenon is known as overfitting. There exists a plethora of pruning techniques to reduce

overfitting by controlling the size of decision trees (Rokach and Maimon, 2005). We use the

C5.0 algorithm (Quinlan, 1993; Kuhn et al., 2014), which uses a statistical heuristic to control

the complexity of the tree. Decision trees are transparent models: it is easy to understand and

explain their decisions. But they often have limited predictive power compared to more complex

methods such as random forests, especially when the dataset is small.

Random forests

A random forest (Breiman, 2001) is a collection of many, often hundreds, of decision trees. By

averaging the predictions of the trees, random forests usually suffer less from overfitting than

any individual tree. Each tree overfits differently and averaging their predictions cancels out

these noisy components and increases the ability to predict on unseen data. To ensure that

trees are sufficiently different from each other, the random forest algorithm uses two techniques:

First each tree is trained on a different subset of the data, which is drawn with replacement

from all observations.8 Second, the algorithm does not choose the best of all possible splits but

randomly samples m candidates from the k predictors, optimises the split for each of them and

then chooses the best split from this subset. In a forest, each individual tree predicts either

the positive or negative class for an observation. The mean prediction across all trees gives an

estimate of the probability that an instance belongs to the positive class.

A random forest often performs substantially better than individual decision trees and many

other machine learning algorithms. Indeed, in a large-scale empirical comparison of 179 clas-

sification algorithms conducted on a diverse set of 121 real world datasets, it was the best

performing algorithm on average (Fernández-Delgado et al., 2014).

Extremely randomised trees

Extremely randomised trees (Geurts et al., 2006) are similar to random forests but tend to

produce predictions that are more continuous as a function of the predictors. They achieve

that by creating more diverse trees. The method differs in two aspects from random forests.

First, each tree is trained on the complete training data and not on a resampled subset of the

8This approach is referred to as bagging (short for bootstrap aggregating) in the machine learning literature
and is a general technique to improve the stability of prediction models (Breiman, 1996).
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data. Second, the splitting process in each tree is more random. For each of the m candidate

predictors that are randomly sampled, a split is not optimised but made completely at random

across the range of the values of the indicator. Of these random splits, the best one is used in

the tree.9

Support vector machines

A support vector machine (SVM) is similar to a logistic regression as it learns a linear function

of the inputs. However, these inputs are transformed by using a nonlinear kernel function,

allowing them to model nonlinear classification problems. Hereby, kernels efficiently transform

the data into a higher linear dimensional space in which the SVM then learns to separate the

positive from the negative class. In the study by Fernández-Delgado et al. (2014), SVMs were,

on average, the second best algorithm. A popular kernel, which we also use in the following

analyses, is the radial basis function (Gaussian kernel, Vert et al. (2004)). We do not train a

single SVM but average the predictions of 25 SVM models that are trained on the same training

set.10

Artificial neural networks

Artificial neural networks have been the most researched machine learning technique in recent

years. They have achieved landmark successes in classification problems such as face (Schroff

et al., 2015) and speech recognition (Amodei et al., 2016), though these and other prominent

applications of neural networks use very large datasets.

A neural network consists of an input layer that represents the values of the predictors, at

least one hidden layer, and an output layer. The inputs are passed from one layer to the next

and are finally integrated as a prediction in the output layer. Without a hidden layer, a neural

network is a linear function of the input layer, such as a linear regression. Starting with the

first hidden layer, each node computes a weighted sum of all its inputs from the previous layer,

transforms the sum using an activation function (e.g. a logistic function), and passes its output

to the next layer.

9We also tested gradient boosting, which has been successfully employed in other economic prediction problems
such as predicting recessions (Ng, 2014; Döpke et al., 2017) and bankruptcy (Carmona et al., 2019; Zikeba et al.,
2016). In our experiments, gradient boosting performed better than logistic regression but fell behind the other
decision tree ensembles, random forests and extreme trees, so we do not report its results in what follows.

10We observe that averaging more than 25 models does not significantly improve the predictive performance.
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Given a dataset with k predictors and a network with a single hidden layer containing m

nodes, k×m weights are needed to fully wire the input layer to the hidden layer, and m weights

are needed to connect the hidden layer with the output layer, which contains only a single node

in a binary classification task.

A neural network has hyperparameters that control the structure of the model such as the

number of hidden layers, the number of nodes, and the activation function. The high number

of parameters and hyperparameters, and a network’s sensitivity to these, makes learning a

predictive network challenging, especially when the available data are small. We do not train

a single neural network but average the predictions of 25 models that are trained on different

samples drawn with replacement from the training set.

3.2 Experimental procedure

In our main analysis, we use cross-validation to evaluate the out-of-sample predictive perfor-

mance of our models. But in Section 4.3 we also show that our key results generally continue

to hold under a forecasting approach.

Cross-validation entails randomly dividing the available data into k groups, known as folds,

equal in size. A model is calibrated using the data in k − 1 groups (the training set) and

evaluated in the remaining group (the test set). This procedure is repeated k times, with each

group serving as the test set exactly once. In our analysis, the data (all included observations

between 1870 and 2016) are randomly assigned to one of five folds.11 Each training set therefore

contains 80% of the observations and the corresponding test set contains the remaining 20%.

To obtain stable results, we repeat the random assignment of folds at least 100 times.

Because training and test sets are sampled randomly from the entire data set, this cross-

validation procedure involves predicting crises of the past using data from the future. In contrast,

recursive forecasting uses only data from the past when making predictions and thus reflects

how early warning models are employed in practice. But there are good reasons for using cross-

validation for our main analysis. Due to the small number of crises in the data, a comparison

of the forecasting performance across models suffers from low statistical power. For example,

previous research suggests that the global financial crisis is qualitatively different from other

11With the following exception: Recall that each crisis observation in the raw data is recoded to two positive
class labels: one and two years before the actual crisis. Because these observations are highly correlated, we
always assign them to the same fold. This avoids an overly optimistic out-of-sample performance. Appendix B.1
examines approaches to cross-validation in detail.
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crises in that global credit plays a crucial role. In a forecasting experiment, we cannot reliably

test a model that learned from the global financial crisis because our dataset contains only a

small number of observations after that crisis.

Some of the machine learning methods require learning hyperparameters (see Appendix

A), which control the flexibility of the model, such as the number of nodes in a neural network.

These parameters cannot simply be optimised in the training set because the most flexible model

structure would always obtain the best fit. Instead, the hyperparameters need to be evaluated

on out-of-sample data. To achieve that, we employ nested cross-validation: within each training

set S of the 5-fold cross-validation procedure, we apply 5-fold cross-validation to assess the

performance of all possible combinations of hyperparameters. The parameter combination that

obtains the best performance in this 5-fold cross-validation is then used to train a model on the

complete training set S.

3.3 Shapley values

The machine learning models described above are non-parametric and error consistent (Stone,

1977; Joseph, 2020), which means that they approximate any sufficiently well-behaved function

arbitrarily well when provided with enough training data. But their high flexibility typically

makes them difficult to interpret. In particular, it is hard to ascertain which specific variables

drive model predictions and through what functional relationship they are important.

We address this issue by adopting the Shapley additive explanations framework (Strumbelj

and Kononenko, 2010; Lundberg and Lee, 2017). It uses the concept of Shapley values (Shapley,

1953; Young, 1985) from cooperative game theory. In that context, Shapley values are used to

calculate the payoff distribution across a group of players. Analogously, we use them to calculate

the ‘payoff’ for including different predictors in the models. More precisely, the predicted crisis

probability for each individual observation is decomposed into a sum of contributions from each

predictor, namely its Shapley values. This enables us to understand which variables have large

predictive value in our machine learning models. The Shapley value framework has a set of

appealing analytical properties while being applicable to any model (Lundberg and Lee, 2017).

In particular, it is the only attribution framework that is local, linear, efficient, symmetric and

respects null contributions and strong monotonicity of variables.12

12Other approaches to make variable attributions include local methods LIME (Ribeiro et al., 2016) and
DeepLIFT (Shrikumar et al., 2017) and global metrics like permutation importance (Breiman, 2001; Fisher et al.,
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Corresponding to the predictor matrix Xn×k described in Section 3.1, we define the Shapley

value matrix as Φn×k and φij as the Shapley value of observation i and predictor j. The predicted

value of observation i is decomposed into the sum of the Shapley values ŷi = ∑k
j=1 φij + c, where

c is the base value that is set to the mean predicted value in the training set.

For a linear regression model, the Shapley value of predictor j is simply the product of its

regression coefficient wj and the difference between the predictor value Xij and its mean, i.e.

φij = wj(Xij−Ei[Xij]). Computing Shapley values for a more general machine learning model is

computationally more complex and is based on Shapley’s work in game theory. In a cooperative

game, the individual contribution within a coalition of players is not directly observable but the

payoff generated by the group as a whole is. To determine the contribution of player j, coalitions

can be formed sequentially and j’s contribution can be measured by her marginal contribution

when entering a coalition, which also depends on the other players in the group. Imagine player

j joins a coalition in which player k has similar skills. In this case, j’s contribution is smaller

than if she had joined the group when k was absent. Therefore, all possible coalitions of players

need to be evaluated to make a precise statement of j’s contribution to the payoff.

More formally, let N be the set of all players in the game, and f(S) be the payoff of a

coalition S. Then the Shapley value for player j is computed by:

φj = ∑
S⊆N∖j

∣S∣!(∣N ∣ − ∣S∣ − 1)!
∣N ∣! [f(S ∪ {j}) − f(S)]. (1)

In our case, we make the analogy between the payoff and the predicted probability estimated by

the model for a particular observation i, i.e. f(Xi) = ∑k
j=1 φij(Xi)+c (Strumbelj and Kononenko,

2010). The set of players N correspond to the predictors used in the model. It follows that

the computation of the Shapley values has to be done for each individual observation for

which we want to explain the predicted value. To compute the exact Shapley value of variable

j for observation i, one has to compute how much variable j adds to the predictive value

(fi(S ∪ {j}) − fi(S)) in all possible subsets of the other variables (S ⊆ N ∖ j). As an example,

take three regressors in a linear model and the prediction ŷ as the payoff. We then compute all

regressions with one, two and the three regressors and examine the marginal contribution of

each regressor in each case. Next, we take the weighted average (1) of marginal contributions

2018). But these do in general not fulfil the Shapley value properties, making them less faithful attribution
methods. For example, permutation importance only measures the relative importance of the individual variables
across the whole dataset and thus cannot be used to identify functional relationships learned by the models, which
is particularly important for nonlinear models.
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accounting for the number of permutations of groups of one, two and three variables.

Contrary to a cooperative game (or linear model), predictors not in S cannot be left out

as this would not allow a (machine learning) model to produce predictions. Instead, these

predictors are integrated out using all observed values in the training set. Within the Shapley

value framework, we can also measure how much interactions of variables contribute to the

predictions. We use the Shapley Taylor Interaction Index proposed by Dhamdhere et al. (2019).

To estimate the Shapley values and interactions, we again use 5-fold cross-validation. The

models are learned in the training set and the Shapley values are computed for the objects in

the test set. We repeat the cross-validation procedure 100 times to obtain stable estimates.

Appendix A provides technical details on the computation of Shapley values and interactions.

Shapley regressions

Shapley values measure how much individual variables drive predictions of a model, independent

of the overall accuracy of the model. In other words, taken in isolation, Shapley values do

not show how reliably the variables actually predict the true outcome, which is a question of

statistical inference.

To judge the economic and statistical significance of predictors, we use Shapley regressions

(Joseph, 2020). To the best of our knowledge, there is no other statistical framework that allows

for joint testing of significance of individual predictors on non-parametric models.13 In our

context, the Shapley regression framework achieves this by regressing the crisis indicator y on

the Shapley values Φn×k using a logistic regression. That is, the probability of predicting a crisis

can be written as

y = Logit(Φ(x) β̂) + ε̂ . (2)

The nonlinear and unobservable function of the predictors in a black box machine learning

model is transformed via Shapley values into an additive, i.e. linear, parametric space which

makes the estimation of p-values a simple regression exercise. The coefficients β̂ measure the

alignment between the predicted probabilities of crises and actual crises.14

13Ishwaran and Lu (2019) introduce testing on variable importance in tree-based models. However, this measure
does not possess all properties of Shapley values and may thus be an unreliable metric.

14In line with the Shapley values for a linear regression model, the surrogate Shapley regression has the appealing
property that if the estimated model is a linear function of the predictors, the Shapley regression will reproduce
the linear model.
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We include all 100 individual Shapley estimates for each observation in the regression to account

for variability across replications. We estimate clustered standard errors on the country-year

level to account for dependencies between observations in our experimental setting. Eq. 2

is a case of inference using generated regressors (Pagan, 1984). Valid inference requires the

independence of the estimation of Φ and β̂ and fast enough convergence of Φ, while also needing

to account for the variability between bootstraps (Joseph, 2020). The first two points are

addressed via unbalanced sample splitting between training and test sets as is standard in

machine learning applications. The last point is addressed via the use of variational estimation

and inference methods (Chernozhukov et al., 2017)). That is, we use cross-fitting with an

additional adjustment of p-values, i.e. doubling them, to obtain valid point estimates from

bootstrapped samples.

4 Machine learning prediction performance

4.1 Model comparison

We now evaluate the predictive performance of the different machine learning models in the

cross-validation exercise and also compare them to a logistic regression approach. All of our

models aim to predict the occurrence of a financial crisis. Therefore, we can evaluate their

performance in the Receiver Operating Characteristic (ROC) space, which illustrates the trade-

off between Type I and Type II errors. Here, the vertical axis shows the true positive rate, also

known as the hit rate, which is defined as the proportion of positive instances (crises) correctly

identified as such. The horizontal axis shows the false positive rate, also known as the false alarm

rate, which is defined as the proportion of negative instances (non-crises) incorrectly identified

as positive (crisis).

The perfect model would obtain a hit rate of 1 and a false alarm rate of 0. In practice, a

higher hit rate comes at the cost of a higher false alarm rate. The trade-off between the hit rate

and the false alarm rate can be controlled by setting different thresholds on the probabilities

predicted by a model to trigger an alarm. The overall performance of a model in the ROC space

can be summarised by the Area Under the Curve (AUC). The main advantage of ROC analysis

is that it does not force the modeller to specify the relative costs of the two types of classification

errors (failing to predict a crisis when there is one and predicting a crisis when there is none),

which is often a non-trivial endeavour and usually depends on the context in which the model
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is applied.

4.1.1 Baseline analysis

Figure II shows how all models compare in out-of-sample prediction in ROC space when using

the baseline explanatory variables from Table I. The standard error of the mean AUC (see

legend of the chart) is below 0.001 for all models. For the logistic regression it should be noted

that this is a different more demanding prediction exercise than the in-sample fitting exercise

summarised in Section 2.3. So the corresponding AUC is lower here than in model (4) in Table

II.15 It is immediately clear that machine learning approaches have potential value relative to

standard regression methods when seeking to predict financial crises. Under the AUC metric,

four out of our five machine learning algorithms perform better than the logistic regression

with extreme trees being the most accurate, followed by random forests. Only the decision tree

performs worst, which is not surprising, as individual decision trees tend to overfit and produce

unreliable probability estimates if the training data is small (Perlich et al., 2003). To quantify

the performance differences, we calibrate the models to obtain a hit rate of 80%. The false alarm

rate of extreme trees is 18% compared to 31% for the logistic regression,16 while, at a hit rate of

70%, the false alarm rate of extreme trees is 10%, compared to 16% for the logistic regression.

4.1.2 Robustness checks

To show that the relative model ranking is robust, Table III reports robustness checks that

test different sets of predictors and transformations with all experiments repeated 100 times

using 5-fold cross validation. We did not test SVMs and neural networks across all of these

combinations because of the generally weaker predictive performance in the baseline and the

extensive computational time involved.

Adding new variables or changing the transformation may lead to a change in the number of

observations due to missing values. To provide a fair comparison, we need to retrain the baseline

models on exactly the same sets of observations as the robustness check is trained on. In Table

III, the retrained baseline models are marked with an asterisk. If the pool of observations

15We also tested regularised logistic regression with ridge, lasso (Ng, 2004), and elastic net (Zou and Hastie,
2005) penalties to reduce overfitting. However, none of the regularisations improved the out-of-sample performance
so we do not report these results in what follows.

16Note that this difference cannot be read of exactly from Figure II, as the curves are generated by averaging
ROCs over cross-validation folds while the precise 80% threshold is calculated across all test repetitions. Basing
the curve on the latter would suggest an overly good performance of the decision tree model.
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Figure II: ROC curves for baseline models.

does not change in a robustness check with respect to the baseline, the results can be directly

compared with the baseline in the first row.

Variable transformations. To ensure that scaling most variables by GDP ratios is

indeed superior, we performed additional analyses using both growth rates and filtered data to

detrend the data. For the growth rate experiment, the slope of the yield curve is left in levels,

the current account is scaled by GDP (as it contains positive and negative values) and all other

variables are transformed into 2-year percentage growth rates. Other de-trending methods used

to identify the gap between the long-term trend of a variable and the observed change are the

Hodrick-Prescott (HP) filter (Hodrick and Prescott, 1997) and the regression filter proposed

by Hamilton (2018).17 The filters are applied to consumption and to the following variables

after scaling them by GDP: domestic credit, global credit, money, public debt, debt servicing,

investment, and current account. Across all models, using changes scaled by GDP (our baseline)

leads to more accurate or as accurate predictions when compared to using growth rates, the HP

17We apply a one-sided HP filter with λ = 100 (see Kauko and Tölö (2019)). For the Hamilton filter, we set the
parameter h = 2, and regress on the four most recent values.
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Experiments Pre-crisis Extreme Random Logistic Decision
observations trees forest regression tree

Unit # AUC

Baseline 95 0.87 0.86 0.82 0.76

Alternative transformations
Growth rates only 95 0.86 0.85 0.81 0.76
HP filter 95 0.85 0.83 0.81 0.75

Hamilton filter 89 0.86 0.85 0.81 0.76
* 89 0.87 0.85 0.82 0.76

Transformation horizons
1 year 95 0.85 0.84 0.82 0.76
* 95 0.87 0.85 0.82 0.76
3 years 92 0.86 0.85 0.80 0.74
* 92 0.87 0.85 0.82 0.76
4 years 90 0.87 0.86 0.80 0.74
* 90 0.87 0.85 0.82 0.77
5 years 89 0.86 0.85 0.80 0.75
* 89 0.87 0.85 0.82 0.76

Alternative variable sets
Nominal interest rates (alternative) 95 0.87 0.85 0.82 0.76
Real interest rates (alternative) 95 0.86 0.85 0.82 0.76
1-yr change nom. s.t. rate (added) 95 0.86 0.85 0.82 0.76
2-yr change nom. s.t. rate (added) 95 0.87 0.85 0.82 0.76
Loans by sector (alternative) 52 0.82 0.83 0.83 0.76
* 52 0.83 0.83 0.83 0.79
House prices (added) 83 0.88 0.87 0.82 0.75
* 83 0.87 0.86 0.82 0.75
Stock prices (removed) 104 0.86 0.85 0.82 0.76

Pre-crisis periods
1–3 years 139 0.85 0.84 0.80 0.73
1–4 years 182 0.83 0.82 0.77 0.74

Table III: Results of the robustness checks for different model specifications. Asterisks
indicate the retrained baseline experiment on exactly the same observations as the respective

robustness check.

filter, or Hamilton filter.18

Horizon of growth rates. The horizon of the growth rates and changes scaled by GDP

are set to 1, 3, 4, and 5 years for all respective variables rather than the 2 years in our baseline.

18We did not test GDP ratios where variables where given as an index (consumer prices, consumption and stock
prices). Growth rates gave the best test results here. We also did not mix transformations within variable sets
but tested transformations against each other whenever possible.
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There are only small differences between horizons but the baseline almost always produced the

most accurate results for all prediction models.

Additional variables. Next, we investigate how the performance changes if we use

alternative or additional variables. Replacing the yield curve slope by the nominal or real long

and short-term interest rates does not improve performance, though we examine the interplay

between the slope and the level of interest rates more carefully in Section 6.

We also added the change in the nominal short-term rate over one and two years as a possible

proxy for monetary policy actions. But again, there was no improvement in the predictions of

the various models.

Replacing total loans by household and business loans does not improve the performance

of any model, either. Adding house prices does increase the performance of extreme trees

and random forests by one and two percentage points, respectively. This is in line with the

observation that credit booms after 1945 are often strongly driven by increases in mortgage debt

and that rapid house price appreciations are indicative of future financial crises (Jordà et al.,

2015a; Richter et al., 2021). However, we find that house prices do not obtain a significant weight

in a logistic regression when controlling for our covariates, including domestic credit growth even

if we calibrate the model only on observations after 1945. The inclusion of house prices also

reduces the crisis sample. Together, these findings lead to the decision to exclude them from the

baseline model, while acknowledging they may have useful value as a supplementary indicator.

Additional observations. In the baseline analysis, we excluded many observations,

including crises, due to missing values of the predictors. The inclusion of stock prices drives

the most exclusions, all of which occur before WW2 (see Table A.I in the appendix). By

dropping this variable, the number of pre-crisis target observations increases from 95 to 104.

The additional observations only slightly change our results. Compared to the baseline, the

predictive performance drops by 0.01 for extreme trees and random forest, while the performance

of the other models does not change.

Pre-crisis periods. In the baseline, we predict crises 1–2 years ahead. One may argue

that two years give policy makers insufficient time to activate macroprudential measures to

stabilise the financial system. Therefore, we trained the models on extended pre-crises periods

of three and four years. Those crises that our baseline model misses (Figure III) are also missed

when extending the pre-crisis period. But we successfully predict several crises more than two

years in advance, including the global financial crisis and the crises in the early 1990s in most
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countries. The greater sensitivity of the model comes at the cost of more false alarms, especially

on the observations before WW2. Predicting crises earlier in time is more difficult and it is

therefore not surprising that the performance of all models deteriorates by a few percentage

points compared to out baseline.

Cross-validation procedure. In Appendix B, we compare four different types of cross-

validation. Our results are stable across these different approaches.

Overall, extreme trees and random forests perform best in each of these additional experi-

ments. This confirms their value in this prediction problem and justifies our focus on extreme

trees in the more detailed analyses which follows.

4.2 Exploring the best predictive model: extreme trees

To enhance understanding of our results, we examine the best performing model—extremely

randomised trees—in more detail. We average the out-of-sample predictions across the replica-

tions and pick one plausible working point on the ROC curve. Policy makers are likely to aim

for a high hit rate because of the unknown but potentially enormous costs of a missed financial

crisis, compared to the smaller and better controlled cost of unnecessarily taking action—for

example via deployment of macroprudential policies—in what turns out to be a false alarm. We

therefore choose a hit rate of 80%. The corresponding threshold at which the model identifies a

crisis is a predicted probability of 9.6%. This setting results in a false alarm rate of 18%.

Using this threshold, Figure III depicts correctly identified crises (green circles), missed crises

(red triangles), false alarms (grey triangles), and the predicted probability of crisis (black line)

for all observations in our sample. To improve legibility, the most prevalent outcome by far,

true negatives (correctly identified non-crisis), are only shown in light green in the pie charts to

the right which depict the overall distribution of all four outcomes for each country.

The model fully misses only six out of 49 distinct crisis events: Sweden (1878), United

Kingdom (1890, 1974), Spain (1977), United States (1984), and Japan (1997). For another six

crises, the model misses either the first or second year ahead of the actual crisis but not both of

these observations. All of the missed crisis episodes can be related either to unclear crisis timing

or aspects not fully captured in our data and models, including concentrated risks domestically

and overseas, which may not be adequately reflected in the aggregate variables we examine, and

other idiosyncratic risks, including major country-specific institutional or regulatory changes.

In relation to Japan (1997), some sources (Reinhart and Rogoff, 2009; Bordo et al., 2001)
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Figure III: Crisis probability estimated by extremely randomised trees (black line) and the
classification (crisis vs. non-crisis) when imposing a probability threshold of 9.6% to achieve a

hit rate of 80%. The countries are ordered alphabetically from bottom to top.

identify 1992 as the start of the crisis. And our model predicts a high crisis probability for

much of the late 1980s and the beginning of the Lost decade in the early 1990s, as reflected in

‘false alarms’. The specific events of 1997 were also partly linked to the Asian financial crisis

of that year, to which Japan was particularly exposed (Wade, 1998). Concentrated exposures

overseas—Argentina and Latin America respectively—also played a key role in the UK’s Barings

crisis of 1890 and the 1984 saving and loans crisis in the US (Mitchener and Weidenmier, 2008;

Reinhart and Rogoff, 2008), though the latter may also be partially attributed to particular

issues with saving and loan associations, which took on risky investments after a substantial

increase in the discount rate meant that the interest rates on their existing long-term loans fell

below their cost of borrowing. The Swedish crisis in 1878 and the UK secondary banking crisis

of 1974 were both characterised by significant losses in specific sectors domestically—the railway

industry (Jonung et al., 2009) and housing respectively (Reid, 1982)—though in relation to the

UK crisis, it is worth recalling our finding that house prices appear to have some value as an

indicator (see Section 4.1) even though they are excluded from our baseline model.
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Finally, the Spanish crisis (1977) was preceded by the end of the Franco regime and the

liberalisation of the previously financially repressed banking sector, which resulted in solvency

problems for many financial institutions that had been lending on uncompetitive terms in the

past (Reinhart and Rogoff, 2009).

It is also worth noting that the relatively high proportion of false alarms is somewhat mis-

leading for several reasons. First, through the choice of the targeted 80% hit rate, the model is,

by construction, fairly risk averse and calibrated to ensure fewer crises are missed at the cost

of a higher false alarm rate. Second, several of the false alarms occur more than two years in

advance of an actual crisis and so still provide a useful very early warning signal. Third, the

false positives cluster around periods when other countries experience financial crises, which

indicate periods of elevated global risks. Linked to this, the model does not account for any pol-

icy measures that might have mitigated a crisis. In particular, the model might have correctly

detected an impending crisis or elevated (global) risks which did not hit particular countries

because of mitigating policy actions. In these cases, even the false positives might provide useful

information for policy makers by indicating when vulnerabilities are building up.

Figure III also shows that the number of false alarms is substantially higher before World

War 2. Given substantial changes to the global economy over time, a general model covering

more than 140 years may not predict consistently well over the full sample period. As we have

fewer observations before WW2 than after, the earlier period also has less weight when training

the model, which means that it is geared to perform better on more recent observations. Finally,

the quality of the earlier data is likely to be lower than that of more recent data. Section 6.2

discusses the robustness of the model across time in more detail.

4.3 Forecasting experiment

All results shown so far are based on cross-validation. If we want to employ a model to predict

future crises in a strict forecasting sense, all observations in the training set must be from

earlier years than the observations in the test set. This simulates how early warning models are

actually used in practice. So we now implement a recursive forecasting experiment, where we

use all observations up to year t − 2 to train the models and test them on observations of year

t, where 1946 ≤ t ≤ 2016.19

19Note that we do not use observations at t − 1 to make a prediction at time t. As in the cross-validation
experiment, whereby we avoid positively biased performance estimates that may occur if one observation of a
crisis (two years before an actual crisis) is in the training set and the other observation of that crisis (one year
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Forecasting period
1946–2016 1946–2003 2004–2016

Neural network 0.833 0.770 0.872
Extreme trees 0.813 0.748 0.870
SVM 0.808 0.700 0.911
Random forest 0.792 0.735 0.846
Logistic regression 0.789 0.704 0.867
Decision tree 0.788 0.727 0.867

Table IV: Forecasting performance (AUC) on all observations after 1945 and those before
and after 2004.

In this way, the models learn from training samples with very different proportions of crises

at different points in time. For example, after the global financial crisis, the proportion of crises

in the training data is substantially higher than before that crisis. As the predicted probability,

and therefore the AUC estimate, is highly sensitive to the proportion of crises in the training

set, for comparability we resampled all training sets such that they contain the same number of

crisis and non-crisis observations.20

Table IV compares the forecasting performance of the models. It shows the AUC on all

observations between 1946–2016, and for the period before and after 2004. The logistic regression

again performs relatively poorly. Across the entire forecasting period, the best model is the

neural network, followed by extreme trees and the SVM. But the test set is small and all

performance differences in all three periods are insignificant at the 5% level according to a

DeLong test (DeLong et al., 1988). We report more detailed results for extreme trees below to

remain consistent with the previous cross-validation exercise.

Figure IV shows the forecasting performance of extreme trees at a hit rate of 80%. Com-

pared to the cross-validation results in Figure III, there are substantially more false alarms.

However, the pie charts show that most predictions are still correct. The forecasting model is

able to correctly forecast the global financial crisis as well as a string of crises in the early 90s

with the Japanese crisis now also correctly signalled. Furthermore, the pattern of missed crisis

before a crisis) is in the test set.
20For all algorithms, we apply two techniques of resampling: upsampling and downsampling. Let n+ and n− be

the number of crisis and non-crisis observations in the training set, respectively. Using upsampling, we increase the
number of crisis observations by drawing n+ observations with replacement. Using downsampling, we decrease the
number of non-crisis observations by sampling (without replacement) from n− non-crisis observations. To obtain
stable results we repeat the resampling and model estimation 50 times and average the predictions across the
iterations. For each model, we do only report the maximum performance obtained by using up- or downsampling.
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Figure IV: Forecasting performance of extreme trees over 1946–2016.

observations in Figure IV (red triangles) is almost identical to that of Figure III, indicating that

models in the cross-validation and forecasting approaches see similar signals.

5 Interpretation of machine learning models using Shapley val-

ues

5.1 Shapley decomposition: variable importance

To assess the importance of the individual predictors across all observations, we compute mean

absolute Shapley values for all predictors. We refer to this measure as the predictive share of

a variable and show it in Figure V for all predictors in the baseline approach across different

models. The variables are ordered by decreasing predictive share for extreme trees.

The two variables with the largest predictive shares are the global yield curve slope and

global credit growth. Both are consistently ranked as the top two across the five models. The

domestic yield curve slope and domestic credit follow after that, again with a high degree of

consistency across different models. CPI, the debt servicing ratio, consumption and investment
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come next but often with significant variabilities across models. This ranking of the variables

closely matches the strength of the predictors in the in-sample logistic regression (Table II).

When dropping stock prices to increase the number of crisis observations or when including

house prices as a predictor, we observe some variation in the ranking of variables. But credit

and the slope of the yield curve, both domestically and globally are consistently the four most

important predictors. Together, these results strengthen the view that these key variables are

robust indicators for predicting financial crises.
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Figure V: Mean absolute Shapley values of individual variables across different models.

To illustrate the potential value of the Shapley decomposition in interpreting the predictions

of our machine learning models, Figure VI shows the decomposition over time for three countries

with varying financial crisis history: the United States (US), Sweden, and Spain. This is again

based on the predictions of extreme trees, our baseline machine learning model. To retain

legibility, only the Shapley values of the yield curve slope and credit growth (both domestic and

global) are shown in different colours; the remaining predictors are summed up in grey bars.

All Shapley values and the mean predicted value in the training set (black dashed horizontal

line) add up to the predicted value, shown by the black circle. The red dotted line shows the
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Figure VI: Shapley values as a function of time for the United Sates (top), Sweden (middle)
and Spain (bottom).

threshold corresponding to a 80% hit rate above which the model predicts a crisis. Vertical red

bars represent our target one or two years ahead of a crisis, grey bars the actual beginning of
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the crisis.

Model performance varies across countries. Generally predictions are more noisy in the pre-

WW2 period. Extreme trees correctly predict most crises for the US. Early in the sample, the

global yield curve slope appears to play a strong role in crisis prediction, though there is also

a substantial number of false positives. The only crisis fully missed is the Savings and Loans

crisis in the 1980s. In Sweden, the model performs very well overall with the global yield curve

again being important early in the sample. The Nordic financial crisis in 1991, which hit Sweden

and Finland most severely (Jonung et al., 2009), is collectively predicted by several factors with

domestic credit playing a strong role. By contrast, the global financial crisis is mainly predicted

by global factors, especially global credit growth.

While global credit is the dominating factor predicting the global financial crisis in the US

and Sweden, the prediction for Spain is strongly driven by domestic credit as well. This reflects

the Spanish housing bubble prior to the crisis (Gentier, 2012). The high false alarms in the late

1980s may be associated with the severe recession affecting many developed countries at the

time, even though this did not translate into a financial crisis in Spain.

Overall, the Shapley approach allows us to explain the predictions of our model well with

clear attribution to economic and financial conditions surrounding individual events. As such,

it can considerably alleviate the black box critique of machine learning models.

5.2 Shapley regressions: variable significance

We now use Shapley regressions to determine the statistical significance of the predictors in our

machine learning models. The crisis indicator is regressed on the Shapley values, which can be

interpreted as an additive feature transformation. Table V shows the output from this exercise

for the extreme trees model. The normalised mean absolute Shapley values (corresponding to

the read line in Figure V) are displayed in the share column. The coefficients represent the effects

of the Shapley values for a one standard deviation change of Shapley values on the predicted

log-odds of crisis (log ŷ
1−ŷ ). It is important to note that the sign of the coefficients does not

indicate the sign of the association between the predictors and the probability of crisis, which is

separately captured in the direction column taken from the baseline logistic regression in Table

II. Rather, the coefficients are expected to be positive because higher Shapley values should

reflect an increase in the predicted probability of the positive (crisis) class. Therefore, we use

one-sided hypothesis tests to calculate the p-values.
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Direction Share Coefficient (SE) p-value

Global slope - 0.23 0.55 (0.11) 0.000
Global credit + 0.18 0.33 (0.08) 0.000
Domestic slope - 0.11 0.37 (0.11) 0.001
Domestic credit + 0.11 0.34 (0.08) 0.000
CPI - 0.07 0.28 (0.09) 0.003
Debt service ratio + 0.05 0.06 (0.09) 0.472
Consumption - 0.05 0.17 (0.09) 0.058
Investment + 0.04 0.18 (0.07) 0.010
Public debt - 0.04 -0.04 (0.09) 0.374
Broad money + 0.04 -0.11 (0.09) 0.810
Stock market - 0.04 0.16 (0.08) 0.039
Current account - 0.03 -0.05 (0.09) 0.436

Table V: Shapley regression. Direction of alignment between predictor and crisis outcome
(same as sign of logistic regression), coefficients and standard errors (SE), p-values against the

null hypothesis (positive coefficients only) and predictive share of variable.

Consistent with our previous results, global and domestic credit and yield curve slopes obtain

the highest coefficients and lowest p-values. Investment and changes in stock market indices are

also significant (p < 0.05). This means that, despite the small magnitude of their signals in

terms of predictive shares, their values are significantly aligned with the crisis indicator and so

they provide a useful supplementary indicator. By contrast, variables like the debt servicing

ratio, public debt and the current account balance have some predictive weight but their signals

cannot be differentiated from the null, i.e. there is no clear alignment with actual crises. The

same is true for house price growth which is not included in the baseline presented here.

5.3 Nonlinearities in the importance of variables

Using Shapley values, we can also depict nonlinearities in the importance of different variables

as captured by the machine learning models. Figure VII plots the Shapley values of the key

predictors as a function of the actual input values. Each circle shows one observation with the

crisis observations being highlighted in red. A Shapley value greater than zero indicates an

increase in the predicted probability of a crisis relative to the model mean, while the opposite

holds for negative values.

To test the importance of nonlinearities, we fit linear (black line) and cubic polynomial

(blue line) regressions to the input-Shapley value relations. The goodness-of-fit in terms of
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Figure VII: Indicator values plotted against Shapley values for each observation on the four
most predictive indicators. Crisis observations are highlighted in red.

R2 is substantially better for nonlinear relationships, particularly global credit. The nonlinear

relationships are also intuitive. A severe flattening or inversion of the yield curve is associated

with a more than proportional increase in the probability of crisis, as is higher global and

domestic credit growth. By contrast, when credit growth is muted or the yield curve is strongly

upwards sloping, changes in these variables make less difference to the predicted crisis probability.

These results highlight that financial systems are particularly susceptible to a crisis when some

variables are in the risky tails of their distributions. To assess the importance of nonlinearities

statistically, we regress the crisis outcome on each indicator independently, once on its actual

values (reflecting a linear model) and once on the Shapley values of extreme trees. For our key

indicators, the goodness-of-fit is significantly better (p < 0.05 according to Vuong’s closeness
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test (Vuong, 1989)) when we regress on Shapley values, thus highlighting the value of machine

learning approaches in capturing important nonlinearities.

6 Indicators for financial crisis prediction: economic interpre-

tation

6.1 The role of the yield curve

6.1.1 The yield curve and recessions

The slope of the yield curve is often seen as an important predictor of recessions (Estrella and

Hardouvelis, 1991; Rudebusch and Williams, 2009; De Backer et al., 2019). Financial crises and

recessions are correlated events that regularly co-occur. So to ensure that the yield curve is not

just predicting recessions but indeed financial crises, we control for recessions when testing the

predictive power of the slope.

We define a recession as a period where real GDP declines compared to the previous year.21

We then test our model only on financial crises which are not preceded by recessions. Since our

dataset is annual, we cannot assess the sequencing of crises and recessions when both events fall

into the same year. We therefore take a conservative approach and focus only on those crises

that neither co-occur with a recession in the same year nor are preceded by a recession 1–2 years

ahead.

We first re-estimate our logistic regression (Model 4) for this subset of crises and compare it

to a regression estimated on the remaining crises, i.e. those that co-occur with or are preceded

by a recession. Concretely, we estimate the regressions on the subset of crises of the respective

type and all non-crisis observations. The results of this exercise are summarised in Table VI.

Model 5 shows that the domestic slope remains a significant predictor of crises (p = 0.012) in

the absence of a recession. The global slope is, however, only a strong predictor when a crisis

co-occurs with or is preceded by a recession (p < 0.001) (Model 6). This suggests that the power

of the global yield curve slope in predicting financial crises partially stems from its role as a good

leading indicator for a global economic slowdown. We then replicate this analysis out-of-sample,

21We compare our annual recession indicator with the well-established monthly US recession indicator of the
National Bureau of Economic Research (Data available from the Federal Reserve Bank of St. Louis (2020)) and
find a very high agreement: Our annual metric only misses one NBER recession (1960–1961) after WW2 and has
no falsely identified recessions.
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(5) (6)

Crises and recession Crises and recession
do not co-occur (n = 26) co-occur (n = 69)

Domestic slope −0.624 −0.573
(0.250) (0.169)

Global slope −0.195 −0.772
(0.251) (0.187)

Observations 1,180 1,223

Table VI: Logistic regression fitting financial crises for two subsets of crises. Model 5: Crises
that neither co-occur with a recession in the same year nor are preceded by recession 1–2 years
ahead. Model 6: Remaining crises, which do follow or co-occur with a recession. The standard

errors of the regression weights are shown in parentheses.

using our best performing machine learning model, extreme trees. In Shapley regressions, we

obtain the same significant coefficients as in the logistic regression.

Together, these results strongly suggest that the domestic yield curve slope can help to

predict financial crises over and above the value it may have in predicting recessions. We

examine why this may be the case in the next subsection.

6.1.2 The slope of the yield curve and the level of interest rates

While credit growth is an established predictor for financial crises in the literature, the role

of the yield curve remains relatively underexplored. To further analyse the potential economic

relevance of the yield curve in financial crisis prediction, we investigate its components, i.e. the

short and long-term nominal interest rates using an in-sample logistic regression.22 To increase

the statistical power, we exclude the global slope from the regression analyses but include all

other covariates.

Table VII presents the results with Model 7 using only the slope and Models 8 and 9 respec-

tively showing how predictive the domestic nominal short-term and long-term rates are. The

short-term rate is a significant predictor (p < 0.001), while the long rate is not (p = 0.81). Model

22In principle, it would also be interesting to explore levels of interest rates relative to the natural rate of
interest but this is not feasible due to significant challenges in estimating the latter in multiple countries over
such a long time period. And while this approach would have some theoretical appeal, institutional constraints
or behavioural biases may in any case mean that investors often pay attention to absolute nominal returns.
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10 uses both interest rates. Compared to using the short-term rate alone, the goodness of fit

improves significantly (p < 0.001). Model 10 implicitly learns a function of the interest rates that

closely mimics the slope. In particular, let l and s be the long and short-term rate, respectively.

Then, the model learns 1.641s − 1.367l = −1.367(l − 1.2s). This model is not significantly better

(p = 0.44) than Model 7, which only uses the slope.

Together with the machine learning robustness checks previously presented in Table III, this

analysis confirms that the yield curve slope is of particular interest rather than just the level

of short or long-term interest rates. But as discussed in Section 2, under certain theoretical

mechanisms, a flat or inverted yield curve may be of greater concern when nominal yields are

low. Models 11 and 12 test this hypothesis. They establish a statistically significant relationship

between the yield curve slope and both the short-term (p = 0.001) and long-term rate (p = 0.014),

with the former showing a stronger interaction effect. Using real interest rates rather than

nominal rates (lower part of Table VII), Models 8–10 do not qualitatively change. However, the

significance of the interaction of the slope with the interest rates disappears (Models 16 and 17).

Figure VIII illustrates these interactions. It shows the predicted probability of crisis as a

function of the domestic slope (horizontal axis), when the nominal short-term rate (left panel)

and long-term rate (right panel) is at its mean and one standard deviation above or below it.

All other predictors are held constant at their mean value. It is evident that when the yield

curve is inverted, the predicted probability of crisis is higher when the level of interest rates is

low (red line). These effects are stronger for nominal than for real interest rates in line with the

finding presented in Table VII.

We also test whether extreme trees exploit these interactions in our out-of-sample experi-

ments, which have the advantage that they do not explicitly pre-specify any interactions. We

use the baseline set of variables, excluding the global slope and add nominal short and long-

term interest rates, respectively. The interactions of both rates with the domestic slope obtain

significant coefficients (p < 0.05) in a Shapley regression.

Taken together, these results imply that a flat or inverted yield curve is of greater concern

when nominal yields are low. If the yield curve slope only affected crisis probabilities via its

effect on net interest margins, the interaction with the level of nominal interest rates should

not be that important except at the effective lower bound which is not relevant in most of

our sample. So these results suggest some role for a search-for-yield channel prior to financial

crises, whereby financial market participant take on more risk to boost nominal returns when
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(7) (8) (9) (10) (11) (12)

Domestic slope −0.786 −1.105 −0.826
(0.131) (0.206) (0.130)

Domestic nominal 0.698 1.641 0.405
short rate (0.167) (0.272) (0.220)

Domestic nominal 0.044 −1.367 0.226
long rate (0.182) (0.313) (0.192)

Domestic slope × 0.482
nominal short rate (0.147)

Domestic slope × 0.186
nominal long rate (0.076)

+ Covariates as in Table VI

Observations 1,249 1,249 1,249 1,249 1,249 1,249
Log Likelihood -257.605 -267.668 -276.245 -257.305 -251.219 -255.670
Akaike Inf. Crit. 539.211 559.336 576.489 540.610 530.438 539.339

(13) (14) (15) (16) (17)

Domestic slope −0.780 −0.788
(0.154) (0.131)

Domestic real 0.552 1.835 0.307
short-term rate (0.151) (0.303) (0.189)

Domestic real 0.097 −1.607 0.179
long-term rate (0.156) (0.330) (0.186)

Domestic slope × 0.156
real short rate (0.110)

Domestic slope × 0.011
real long rate (0.100)

+ Covariates as in Table VI

Observations 1,249 1,249 1,249 1,249 1,249 1,249
Log Likelihood -257.605 -269.507 -276.084 -257.062 -256.039 -257.056
Akaike Inf. Crit. 539.211 563.014 576.168 540.123 540.077 542.112

Table VII: Logistic regression models fitted to all data points including domestic nominal
(upper part) and real (lower part) short and long-term interest rates. The standard errors of

the regression weights are shown in parentheses.

term premia and nominal yields are both low. This is in line with Borio et al. (2017) who

showed that the interaction of a low yield curve slope and low interest rates compresses bank

profitability.
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Figure VIII: Interaction effects in Models 9 and 10. The plot depicts the effect of the slope
on the predicted probability of crisis at three different levels of the short-term rate and

long-term rate (mean, ± 1 standard deviation). All remaining predictors are held constant at
their mean value.

6.1.3 Robustness of the global yield curve

A natural question is whether the importance of the global yield curve proxies a particular

country (Rey, 2015). We address this by replacing the global slope variable for all countries

with the domestic slope of individual countries, running through each of the 17 countries. We

change the cross-validation procedure to avoid overfitting of the machine learning models because

the value of the global slope is identical across countries in a specific year within this setting.

We assign all observations of the same year to the same fold and also require that the two

observations before a crisis (positive outcome) are in the same fold.23 The predictive performance

of extreme trees generally deteriorates using individual country slopes. For example, the AUC

is 0.750 when using the US slope, compared to 0.765 when using the global variable based

on the same cross-validation procedure. Therefore, we conclude that we are truly picking up

global financial conditions with our global yield curve variable rather than simply reflecting the

conditions in, for example, a dominant country in the global financial system.24

23see Appendix B.1
24We replicate this procedure for the global credit variable and again find that the performance drops when

replacing global credit growth with credit growth of the individual countries. For example, when using US credit
growth, the AUC is 0.735, compared to 0.765 when using the global variable.
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6.2 The importance of variables across time

The financial and economic system has changed substantially over the period covered in our

dataset. We therefore expect that the prediction of crises is also subject to changes over time.

As we are interested in how well the predictors differentiate between crisis and non-crisis obser-

vations, we compute the Shapley difference, i.e. the mean Shapley value of crisis observations

subtracted by the mean Shapely values of non-crisis observations. Figure IX shows the Shapley

differences for specific time periods in the data (i.e. pre and post-WW2, crises in the 1990s, and

the global financial crisis).
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Global financial crisis (2004 - 2010)
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Figure IX: Mean difference of Shapley values (crisis minus non-crisis observations) for
different periods

Before World War 2, the global slope and domestic credit mainly differentiates crisis from

non-crisis observations. During the series of financial crises that occurred in the 1990s, domestic

credit, the global slope, and the debt service ratio are key predictors. During the global financial

crisis, and only then, by far the most important predictor is global credit. This may be partly

driven by financial globalisation which has magnified the importance of international credit

growth (Cesa-Bianchi et al., 2019). For example, Germany and Switzerland experienced negative

domestic credit to GDP growth before the global financial crisis. Nevertheless, both countries
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experienced a financial crisis because their banking sectors were highly exposed to global risks.

The results from Figure IX are based on a single model covering the whole sample period. It

may, however, be the case that relations between variables changed fundamentally such that a

single, albeit flexible model, cannot adequately differentiate between different regimes. To test

this, we fit extreme trees independently to pre and post-WW2 samples and repeat the above

exercise. Reassuringly, all main findings hold. The only main change is an increased importance

of the debt servicing ratio in the pre-WW2 sample. We present these results in Appendix B

(Figure B.III).

The analysis highlights that the global slope of the yield curve is a key predictor across

the whole period covered by our dataset. This might be explained by two regimes. First, the

Gold Standard and then pegged exchange rates established a close connection of macroeconomic

policies across countries (Obstfeld et al., 2005). Later, the globalisation of the world economy

and financial markets, especially a greater global bond market integration (Diebold et al., 2008)

may have cemented the importance of the global yield curve.

6.3 Credit and the yield curve slope: global-domestic interactions

The Shapley values in Figure V show the total contribution of a variable to model predictions.

They do not tell us how much of this effect can be attributed to that variable alone and how

much to interactions with other variables. But the Shapley value framework also allows us to

measure explicitly how much a particular interaction drives a prediction (Dhamdhere et al.,

2019).

Variable 1 Variable 2 Direction Share Coefficient (SE) p

Global credit Domestic credit − (dampening) 0.036 0.101 (0.056) 0.036
Global credit Domestic slope − (amplifying) 0.044 0.131 (0.066) 0.024
Global slope Domestic credit − (amplifying) 0.074 0.314 (0.105) 0.001
Global slope Domestic slope − (dampening) 0.048 0.021 (0.066) 0.373

Table VIII: Shapley regression on variable interactions. Each row is based on a different
regression including the respective interaction and the main effects of the 12 predictors. To

estimate the direction of an interaction, we regress the crisis outcome on the respective input
variables and their interaction. We use a one-sided hypothesis tests to calculate the p-values.

We investigate Shapley interactions in the extreme trees model. We focus on the interactions

between the global and domestic levels of our most predictive variables: the yield curve slope
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and credit growth.

Table VIII shows the summary statistics for the interaction terms in Shapley regressions.

Each interaction is tested in an individual Shapley regression that controls for the main effects

of all 12 predictors but does not contain the other interactions to avoid collinearity issues. If a

term’s direction equals the product of component variables from Table V, the interaction has

an amplifying effect, otherwise it dampens or corrects the single variable contributions. For

instance, both the interaction between global credit and domestic credit and the domestic yield

curve slope are significant (p < 0.05). However, only the latter shows an amplifying effect, while

the former suggests that observing both high domestic and global credit growth is marginally

less concerning than the sum of individual components.
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Figure X: Shapley interactions between domestic credit and the global slope of the yield
curve. The scatter plot shows all observations as a function of their values on two predictors.
The colour of the observations denotes the value of the Shapley interaction, with darker red
indicating a higher predicted probability of crisis. Crisis observations are highlighted with

black circles. The quadrants are defined by the mean value of each variable.

It is evident from these results that there is a particularly strong amplifying interaction

on crisis risk between the global slope of the yield curve and domestic credit growth. The

predictive power of this interaction surpasses that of most individual variables by share when

compared to Table V. To illustrate this further, Figure X depicts this interaction. Values of
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the input variables are shown on the horizontal and vertical axis. The horizontal and vertical

lines represent the means of variables, thus dividing the chart into four quadrants of low/high

value combinations. The value of the Shapley interaction is shown by the colour with darker red

indicating a higher probability of crisis. It is clear that most crises (black circles) fall into the

upper left quadrant of high domestic credit growth and a globally flat or inverted yield curve.

Overall, this analysis points towards the potential importance of the international yield curve

environment in amplifying domestic exuberance.

7 Conclusion

This paper shows that machine learning models outperform logistic regression in predicting

financial crises on a macroeconomic dataset covering 17 countries between 1870 and 2016 in both

out-of-sample cross-validation and recursive forecasting. The most accurate models are decision-

tree based ensembles, such as extremely randomised trees and random forests. These accurately

predict the majority of financial crises ahead of time—including the global crisis in 2007–08. The

gains in predictive accuracy justify the use of initially more opaque machine learning models.

To understand their predictions, we apply a novel Shapley value framework which allows us to

examine the contributions of individual predictors economically and statistically.

All models consistently identify the same predictors for financial crises. These key early

warning signs include: (i) prolonged high growth in domestic credit relative to GDP; (ii) a flat

or inverted yield curve especially when nominal yields are low, and (iii) a shared global narrative

in both of these dimensions as indicated by the importance of global variables. While the crucial

role of credit is an established result in the literature, the predictive power of the yield curve

has obtained far less attention as an early warning indicator and we find that the slope of the

domestic yield curve has important predictive power even after controlling for recessions.

We also inspect nonlinearities and interactions identified by the machine learning models.

Global credit shows a particularly strong nonlinearity—only very high global credit growth

beyond a certain point influences the prediction of the models. Interactions are particularly

strong between global and domestic indicators. For instance, a globally flat or inverted yield

curve coupled with strong domestic credit growth may highlight a significant crisis risk. Overall,

our findings suggest a combination of low risk perception, search-for-yield behaviour and strong

credit growth in the years preceding a crisis.
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While our analysis does not necessarily say the above factors cause financial crises, it does

highlight that they make a country more vulnerable to financial crises. There will always be

inherently unforeseeable events, such as the economic fallout caused by Covid-19, which remain

very challenging to predict by any model. However, identifying a financial system as more vul-

nerable and therefore more likely to amplify unexpected shocks into a fully-fledged financial crisis

remains crucial given the enormous economic, political, and social consequences that financial

crises entail. With more accurate predictive models and reliable indicators complementing softer

information and judgement, policy makers can pre-emptively adjust macroprudential measures

such as countercyclical capital buffers (BCBS, 2010). Such action may help to avoid or at least

reduce the consequences of financial crises.

More generally, our results highlight the potential value of machine learning models for

broader economic policy making in two key dimensions. First, our approach illustrates how ma-

chine learning techniques can uncover important nonlinearities and interactions which facilitate

superior out-of-sample prediction and forecasting even in situations characterised by relatively

small datasets with limited observations of the event of interest, such as the Global Financial

Crisis of 2007–2008. Second, the novel Shapley value approach demonstrates how the black box

concern linked to the practical policy application of machine learning models may be overcome.

In particular, by providing a mechanism to identify the key economic drivers of the predictions

generated by such models, it allows insights from machine learning models to be integrated into

a broader decision making framework while preserving the transparency and accountability of

any resulting public policy decision.
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Tölö, Eero (2019) “Predicting systemic financial crises with recurrent neural networks”, research discus-
sion papers, Bank of Finland.
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A Data and Methods Appendix

Table A.I shows the proportion of missing values for our main variables and the variables used in

the robustness checks. As in our empirical analysis, the two world wars (1914–1918, 1939–1945)

and the later years of the Great Depression (1933–1939) are excluded. The proportion of missing

values is calculated before applying any transformations to the variables.

Proportion of missing values

All observations pre-WW2 post-WW2

Variables used in main analysis
GDP 0.00 0.01 0.00
CPI 0.00 0.00 0.00

Current account 0.04 0.08 0.01
Short-term rate 0.06 0.10 0.01
Long-term rate 0.01 0.01 0.00

Broad money 0.05 0.08 0.03
Credit 0.07 0.15 0.00

Public debt 0.06 0.11 0.02
Stock prices 0.12 0.26 0.00

Consumption 0.04 0.09 0.00
Investment 0.06 0.13 0.01

Variables used in robustness checks
Business loans 0.46 0.83 0.16

Household loans 0.43 0.78 0.15
House prices 0.23 0.40 0.09

Table A.I: Proportion of missing values for the predictors used in our analyses.

A.1 Machine learning models implementation

Here, we describe the implementation and the parameter settings of the machine learning algo-

rithms. If a parameter is not specified in the following, we used its default value.

Logistic regression. We used the SGDCClassifier implementation from the Python package

sklearn with penalty = None and loss = log. We also tried regularised logistic regression

(Lasso, Elastic-net) but did not observe an improvement in performance.

Random forest. We used the RandomForestClassifier implementation from the Python

package sklearn with n estimators= 1000 and used the default values of the other hy-

perparameters as random forests are known to be rather insensitive to the choice of hyper-

parameters. Nevertheless, we also tested a version of random forest for which we searched
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for max features ∈ {1,2, ..10} and max depth ∈ {2,3,4,5,7,10,12,15,20} using 5-fold cross-

validation in the training set. It did not improve the performance.

Extremely randomised trees. We used the ExtraTreesClassifier implementation from

the Python package sklearn with n estimators=1000 and used the default values of the

other hyperparameters. We also tested a version for which we searched for hyperparamters

max features ∈ {1,2, ..10} and max depth ∈ {2,3,4,5,7,10,12,

15,20} using cross-validation in the training set but it did not improve the performance.

Support vector machine. We used the SVC implementation from the Python package

sklearn and searched for hyperparameters C ∈ {2−5+15×
0
9 ,2−5+15×

1
9 , ...,2−5+15×

9
9 } and

gamma ∈ {2−10+13×
0
9 ,2−10+13×

1
9 , ...,2−10+13×

9
9 } using cross-validation in the training set.

We trained 25 SVMs in each training sample. For each model, we upsample the crisis

observations, i.e. we randomly draw with replacement as many crisis observations as there

are non-crisis observations in the training set. The hyperparameter search was conduced

for each model independently. The final prediction is the mean predicted value across all

models.

Neural network. We used the MLPClassifier implementation from the Python pack-

age sklearn with solver=lbfgs and searched for hyperparameters alpha=∈ {10−3+6×
0
9 ,

2−3+6×
1
9 , ...,2−3+6×

9
9 }, activation ∈ {tanh, relu}, and hidden layer sizes ∈ {n/3, n/2, n,

(n,n/2), (n,n), (2n,n), (2n,2n)}, where n is the number of predictors. Numbers all

rounded to the nearest integer. We trained 25 neural networks on bootstrapped samples of

each training set. The hyperparameter search was conduced for each model independently.

The final prediction is the mean predicted value across all models.

Decision Tree C5.0 We used the C5.0 implementation from the R package C50 with trials= 1,

noGlobalPruning = False, and minCases= 1. We weight the observations such that both

classes contribute equally to the training set. The objects in the positive class (N+) were

weighted by 0.5/ N+
N++N−

and the objects in the negative class (N−) by 0.5/(1 − N+
N++N−

).

CART We used the rpart implementation from the R package rpart with maxdepth= 10 and

cross-validated the complexity parameter. We weight the objects such that both contribute

equally to the training set. We do not report CART in the paper because it performed

less well to the other decision tree algorithm C5.0.
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Gradient boosting We used the XGBClassifier implementation from the Python package

xgboost and searched for hyperparameters learning rate ∈ {0.01,0.05,0.1,0.15,

0.2}, min child weight ∈ {1,5,10}, and n estimators ∈ {50,100,250,500}. We upsampled

the crisis observations, i.e. we randomly draw with replacement as many crisis observations

as there are non-crisis observations in the training set. We do not report Gradient Boosting

in the paper because it performed less well to the other tree ensembles random forest and

extremely randomised trees.

A.2 Computation of Shapley values

We use the shap Python package (Lundberg, 2018) to estimate the Shapley values efficiently.

Lundberg and Lee (2017) provide a detailed explanation of how Shapley values are computed in

the context of explaining predictions of machine learning models. A tacit assumption behind the

above calculation is variable independence which cannot be accounted for using non-tree models

(Lundberg et al., 2018). However, the robustness of variable importances measured by Shapley

values across all models, especially for dominant predictors, suggests that any contemporaneous

dependences between variables can be neglected in the current application.

To estimate the Shapley values of interactions, we use the Shapley Taylor Interaction Index

proposed by Dhamdhere et al. (2019). It decomposes the predictions into the main effects of

the predictors and interactions of up to k predictors. The higher k, the more accurate the

decomposition is. However, increasing k also increases the computational complexity of the

decomposition substantially. For a decomposition of order k, interactions of order k − 1 are

unbiased, meaning that they are net of higher order interactions. Hence, we compute all pairwise

and three-way interactions (k = 3) but focus our analysis on the pairwise interactions. For tree

models, the Shapley interaction index proposed by Lundberg et al. (2018) is computationally

much cheaper to compute than the Shapley Taylor Interaction Index. However, the theoretical

work by Dhamdhere et al. (2019) shows that the former method tends to overestimate the

interaction effects and biases the main effect estimates. In our empirical analysis, both methods

produce qualitatively very similar estimates for the interactions, suggesting that higher order

effects are negligible.
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B Results Appendix

B.1 Four types of cross-validation

In our main experiment, we use 5-fold cross-validation to estimate the out-of-sample performance

of the prediction models. Different constraints can be imposed when assigning the observations

to the folds. Here, we investigate whether these constraints materially change our results, both

in terms of predictive performance and in terms of variable importance. We test four types

of cross-validation. First, in unconstrained cross-validation, country-year pairs are randomly

assigned to the five folds. Second, we impose the constraint that the two observations of the

same crisis (two years before the actual crisis observation) are assigned to the same fold. This

type of cross-validation is the approach reported in the main body of the paper. Third, we assign

all observations of the same year to the same fold. Fourth, we combine the two constraints and

require that observations of the same year and crisis are in the same fold.
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Figure B.I: Shapley values for extreme trees for the four different cross-validation
experiments. “Crisis” corresponds to the baseline approach presented in the main part of the

paper.

In the empirical test of these four types of cross-validation, we use the variables and trans-
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formations of our baseline experiment and report the performance of the most accurate model,

extreme trees. The unconstrained cross-validation achieves the highest performance (AUC =

0.91), followed by the constrained procedure that assigns all observation of the same year to

the same fold (AUC of 0.88). The baseline procedure achieves an AUC of 0.87. The strictest

constraint of assigning both the year and crisis to the same fold reduces the AUC to 0.77. This

pronounced decline in performance is mostly driven by the reduced accuracy on the global fi-

nancial crisis. In 15 of the 17 countries, the onset of the crisis was in 2008. With the constrained

cross-validation, the observations of the two years before 2008 are either all in the training set

or in the test set. In the former case, the importance of global credit is learned but is not very

useful for the prediction in the test set. In the latter case, the importance of global credit cannot

be learned from the training data and therefore the prediction on the observations of the global

financial crisis in the test set is not very accurate.

Figure B.I confirms this explanation. It shows the mean absolute Shapley values for the four

types of cross-validation. Generally, they all show highly similar patterns. However, the global

credit variable is a less important predictor for the constrained cross-validation with the year

plus crisis constraint. But, in all four types of cross-validation, extreme trees still outperform

logistic regression, by at least 4 percentage points in AUC.

B.2 Global variables

The most straightforward operationalisation of global credit to GDP growth is the mean credit

to GDP growth across all countries in a particular year. Similarly, the global slope could be

measured as the mean slope of the yield curve across all countries. However, this implementation

is problematic, as it creates a data leakage between training and test sets.

For example, assume that half of the 2008 observations are in the training and set and the

other half in the test set. As most countries experienced a crisis in 2008, a flexible machine

learning model learns to associate the exact value of the global variable in that year with a high

probability of crisis. It implicitly learns the year, instead of learning a trend from the values of

the variable. To confirm that, we trained extreme trees on each of the global variables separately.

We randomly shuffled the actual values of the global variables across years and just made sure

that all observations of the same year had the same value. The out-of-sample AUC was 0.82 for

both global variables. By implicitly learning an association between year and country, without

any actual information about the level of global credit, or global slope, we obtain a very high
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predictive performance.
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Figure B.II: Depiction of the global variables. The grey circles show the actual values, the
vertical lines show the range of values in each year.

To avoid this effect, we defined the global variable for country c in year y as the average value

of the domestic variables in year y for all countries except c. Several checks confirm that this

operationalisation of the global variables is not prone to the same problem as the simple average

across all countries and that our cross-validation results are therefore not positively biased.

First, Figure B.II shows our global variables (circles). The range of the values overlaps be-

tween years such that the model cannot infer the year from the variable. Second, we used our

global variables as the only predictor in the cross-validation experiment. Now, extreme trees

obtained an AUC of only 0.58 and 0.62 for global credit and slope, which confirms that our

variable does not directly map to years. Third, the Shapley analysis in Figure VII depicts that

extreme trees learn a smooth monotonic association between the actual value of the global vari-

ables and the probability of financial crises rather than a direct mapping of values to probability

of crisis. Fourth, the constrained cross-validation (Figure B.I) and the forecasting experiment

both confirm the crucial role of the global variables. In these experiments, an implicit learning

of the year can be ruled out as observations of the same year are constrained to be all in the

training or test set but not distributed among them.
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Before WW2 (1870 - 1933)
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After WW2 (1946 - 2016)
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1990s crises (1985 - 1992)
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Global financial crisis (2004 - 2010)
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Figure B.III: Mean difference of Shapley values (crisis - non-crisis observations) for different
periods. The top left plot is based on an extreme trees model trained on pre-WW2

observations, only. The other plots are based on an extreme trees model based on post-WW2
observations, only. Note that this figure is qualitatively very similar to Figure IX in the main

text which is based on a single model trained on the whole sample.
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