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Abstract

Time-varying parameter (TVP) models have the potential to be over-parameterized, par-

ticularly when the number of variables in the model is large. Global-local priors are

increasingly used to induce shrinkage in such models. But the estimates produced by

these priors can still have appreciable uncertainty. Sparsification has the potential to re-

move this uncertainty and improve forecasts. In this paper, we develop computationally

simple methods which both shrink and sparsify TVP models. In a simulated data exer-

cise we show the benefits of our shrink-then-sparsify approach in a variety of sparse and

dense TVP regressions. In a macroeconomic forecast exercise, we find our approach to

substantially improve forecast performance relative to shrinkage alone.

Keywords: Sparsity, shrinkage, hierarchical priors, time varying parameter re-

gression

JEL Codes: C11, C30, E3, D31
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Non-technical summary

Time-varying parameter (TVP) regressions and Vector Autoregressions (VARs) have enjoyed great

popularity among econometricians in recent years as a way of modelling the parameter change that

occurs in many macroeconomic and financial time series variables. However, their flexibility comes at a

cost: TVP models can be over-parameterized and suffer from the curse of dimensionality, particularly

when the number of potential explanatory variables is large. This can lead to very good in-sample fit,

but poor out-of-sample forecast performance.

There is a large and growing literature that proposes various methods for overcoming these over-

parameterization concerns using Bayesian methods. Part of the literature uses hierarchical global-local

shrinkage priors, pulling coefficients towards zero but not imposing them to be exactly zero (thus,

estimation uncertainty remains). In contrast to shrinkage approaches, selection approaches seek to

choose a single sparse specification, imposing coefficients on non-selected explanatory variables to be

exactly zero.

Which is better: shrinkage or sparsity? In this paper, we develop computationally simple Bayesian

methods for inference and forecasting which both shrink and sparsify. We extend the literature in two

ways: first, we apply this technique to time varying parameter (TVP) models. Second, we account

for uncertainty in the sparsified estimates.

In an artificial data exercise, we show that our shrink-then-sparsify approach to TVP regression

leads to more accurate estimates for a variety of DGPs. Particularly large gains are found in sparse

DGPs. Adding sparsification to shrinkage also leads to substantial improvements in forecast per-

formance. We finally present results from a forecasting exercise using US quarterly macroeconomic

data. In a macroeconomic forecast exercise, we find our approach to substantially improve forecast

performance relative to shrinkage or sparsification alone.
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1 Introduction

Time-varying parameter (TVP) regressions and Vector Autoregressions (VARs) have enjoyed great

popularity among econometricians in recent years as a way of modelling the parameter change that

occurs in many macroeconomic and financial time series variables. These are state space models

which have been found to work well in forecasting (e.g. D’Agostino et al., 2013) and been successfully

used for structural economic analysis in a changing environment (e.g. Cogley and Sargent, 2005;

Primiceri, 2005). They are flexible and capable of modelling almost any nonlinear relationship between

explanatory and dependent variables. However, this flexibility comes at a cost: TVP models can be

over-parameterized and suffer from the curse of dimensionality, particularly when the number of

potential explanatory variables is large. This can lead to very good in-sample fit, but poor out-of-

sample forecast performance.

There is a large and growing literature that proposes various methods for overcoming these over-

parameterization concerns using Bayesian methods (see, among others, Frühwirth-Schnatter and Wag-

ner, 2010; Belmonte et al., 2014; Kalli and Griffin, 2014; Kowal et al., 2017; Uribe and Lopes, 2017;

Rockova and McAlinn, 2017; Koop and Korobilis, 2018; Bitto and Frühwirth-Schnatter, 2019; Huber

et al., 2019; Eisenstat et al., 2019). These papers propose different approaches to obtain more precise

inference. Much of this literature uses hierarchical global-local shrinkage priors. A key property of

these priors is that they ensure shrinkage in the sense that they pull coefficients towards zero. However,

they do not impose them to be exactly zero and, thus, estimation uncertainty remains. In contrast to

shrinkage approaches, selection approaches seek to choose a single sparse specification. That is, they

select a particular set of explanatory variables and, by doing so, impose coefficients on non-selected

explanatory variables to be zero.1

Which is better: shrinkage or sparsity? The answer to this question depends on the empirical

application. In the case of constant coefficient regressions and VARs, there is debate among Bayesian

econometricians as to whether models are sparse (in which case sparsification methods are appropriate)

or dense (in which case shrinkage is appropriate). For instance, Giannone et al. (2017) considers a

range of data sets in macroeconomics, microeconomics and finance and finds evidence mostly in favor

of dense models, a finding reinforced by Cross et al. (2019). But why not do both? This is exactly

1In the Bayesian literature, there are some global-local priors, such as the spike and slab prior, which do select
variables, but these are less popular since Markov Chain Monte Carlo (MCMC) algorithms tend to mix poorly.
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what recent papers such as Hahn and Carvalho (2015) propose. That is, first shrinkage is done using

a Bayesian global-local shrinkage prior and then sparsification is done on the resulting estimates.

Such an approach could add the benefits of sparsity (i.e. the reduction in estimation error that

is important for improving forecasts) along with the benefits of shrinkage which are so useful with

dense data sets. Until recently, one reason not to do both was computation. Bayesian inference with

hierarchical shrinkage priors requires computationally-burdensome MCMC methods. Adding a second

sparsification step can greatly increase the burden (i.e. this step often uses cross-validation methods

for choosing key tuning parameters which can be computationally costly). However, a recent paper,

Ray and Bhattacharya (2018), proposes a very simple algorithm, the signal adaptive variable selector

(SAVS), for doing the sparsification step. This involves no tuning parameters and is computationally

trivial. Ray and Bhattacharya (2018) provides a theoretical justification for SAVS and shows it to

have good empirical performance in simulated and real data contexts.

The papers cited in the preceding paragraph all relate to constant coefficient regression or VAR

models rather than the TVP state space models which are the focus of this paper. We develop

Bayesian methods for inference and forecasting in TVP regressions and TVP-VARs which both shrink

and sparsify. The shrinkage step can be done using any of the hierarchical shrinkage priors that have

been used with TVP regressions. In this paper, we use the Dirichlet-Laplace prior (see Bhattacharya

et al., 2015), a fully hierarchical variant of the stochastic search variable selection prior (see George

and McCulloch, 1993; Ishwaran and Rao, 2005; George et al., 2008), the Horseshoe (see Carvalho

et al., 2010), the Bayesian Lasso of Park and Casella (2008) and the Normal-Gamma prior of Griffin

and Brown (2010). The sparsity step is done using the SAVS method of Ray and Bhattacharya (2018).

Another extension we make in this paper relative to the shrink-then-sparsify methods of Hahn and

Carvalho (2015) and Ray and Bhattacharya (2018) is that we allow for uncertainty in the sparsified

estimates. That is, Hahn and Carvalho (2015) and Ray and Bhattacharya (2018) take the posterior

mean from the shrinkage step and use only this in the sparsification step. We sparsify every MCMC

draw in the shrinkage step, thus allowing for parameter uncertainty. Our methods are illustrated with

simulated and real data and we find them to improve estimation accuracy and forecast performance.

The remainder of this paper is organized as follows: Section 2 discusses various global-local shrink-

age priors in the context of the regression model with constant coefficients. It describes how the

sparsification strategy of Ray and Bhattacharya (2018) works in the regression model. Section 3 ex-
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tends these methods to TVP regressions and TVP-VARs. Section 4 investigates the performance of

our methods relative to non-sparsified alternatives using simulated data from a range of sparse and

dense TVP regressions. Section 5 carries out a forecasting exercise using TVP-VARs. A comparison

of forecasts which are both shrunk and sparsified to those which are only shrunk shows the benefits

of doing both. Section 6 concludes the paper and a technical appendix provides further details on the

specific prior setup and the posterior simulation algorithms.

2 Shrinkage and Sparsification in Regression Models

In this section we describe the shrinkage and sparsification methods for regression which we build on

in this paper. In the next section, we will show how they can be adapted for dynamic regressions and

multiple equation models such as VARs. Consider the regression model:

yt = β′Xt + εt, (1)

for t = 1, . . . , T where yt is a scalar dependent variable, Xt is a K × 1 vector of explanatory variables

and β is a K-dimensional vector of regression coefficients. The errors are assumed to be independent

and follow a zero mean Gaussian distribution with variance σ2ε .

When K is large relative to T , Bayesians increasingly use hierarchical priors so as to induce

shrinkage. Global-local shrinkage priors are particularly popular (see, e.g., Polson and Scott, 2010).

These contain shrinkage that is both global (i.e. common to all parameters) and local (i.e. specific

to each parameter). We consider priors which can be represented as scale mixtures of Gaussians. In

particular, for the jth regression coefficient we assume:

βj ∼N(0, φjλ), φj ∼ f, λ ∼ g. (2)

Global shrinkage is controlled by λ while φj handles the shrinkage of coefficient j. f and g are

mixing densities and many different choices have been proposed for them. In this paper, we consider

the Horseshoe (HS) prior of Carvalho et al. (2010), the Bayesian Lasso (Lasso) of Park and Casella

(2008), the Normal-Gamma (NG) prior of Griffin and Brown (2010), the Dirichlet-Laplace (DL) prior

of Bhattacharya et al. (2015) and the Normal- mixture of Inverse Gamma (NMIG) prior of Ishwaran
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and Rao (2005), which is a variant of the stochastic search variable selection (SSVS) prior of George

and McCulloch (1993, 1997). All of these are global-local shrinkage priors and differ from one another

only in the choices of f and g. In addition, and unless otherwise noted, we use a weakly informative

inverted Gamma prior on σ2ε with hyperparameters dσ = eσ = 0.01.

Using any of these global-local shrinkage priors, MCMC methods can be used to carry out posterior

inference and calculate the posterior mean, β̂. This estimate has been shrunk, but not sparsified. Even

though many elements of β̂ will be near zero, they will not be precisely zero and there will be estimation

uncertainty associated with them. Sparsification, as used in Hahn and Carvalho (2015) and Ray and

Bhattacharya (2018), proceeds by taking β̂ and setting small elements in it to zero. We first define

the SAVS estimate and then offer some explanation and motivation for it. The SAVS estimate is

γj = sign(β̂j) ||Xj ||−2max
(
|β̂j | ||Xj ||2 − κj , 0

)
, (3)

with Xj denoting the jth column of a T×K matrix X = (X1, . . . ,XT )′, (x)+ = max(x, 0) and sign(x)

returns the sign of x. Note that this is a soft-thresholding approach where all values of γj below a

certain value are set to zero and that it only acts on the posterior mean.

The sparsified estimate depends on tuning parameters, κj , which determine the thresholds for

each coefficient. Various approaches to selecting these have been proposed in the literature including

computationally-intensive approaches such as cross-validation. However, a recent paper, Ray and

Bhattacharya (2018), comes up with a surprisingly simple solution. This is to set:

κj =
1

|β̂j |2
. (4)

This choice implies a penalty for the jth variable which is ranked in inverse-squared order relative to

the magnitude of the jth coefficient. With this choice of thresholds, the SAVS estimate is trivial to

calculate.

To provide some motivation for the SAVS estimate note that (3) can be obtained by first solving

an optimization problem akin to the Lasso:

γ = arg min
γ

1

2

∥∥∥Xβ̂ −Xγ∥∥∥2
2

+
K∑
j=1

κj |γj |

 . (5)
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Equation (5) tries to find a sparse coefficient vector γ that is close to β̂ while introducing a penalty

in case of non-zero elements in γ.

The typical way to solve this optimization problem is using a coordinate descent algorithm (Fried-

man et al., 2007). But, as shown in Ray and Bhattacharya (2018), if you initialize this algorithm at

β̂ and then do one iteration you get precisely the simple algorithm described in (3) and (4). It is also

noted in Ray and Bhattacharya (2018) that convergence almost always occurs after one iteration and,

hence, stopping after one iteration is a sensible thing to do.

One key shortcoming of computing the SAVS estimate is that uncertainty quantification about γ

is not possible and computing non-linear functions of γ calls for Monte Carlo integration techniques.

Ray and Bhattacharya (2018) highlight that one potential solution to this issue is to replace β̂ with

a draw from the full conditional posterior distribution of β. This is an insight we build upon in the

context of the TVP models which are the focus of this paper.

3 Shrinkage and Sparsification in TVP Models

In this section, we develop methods for shrinkage and sparsification in state space models such as

the TVP regression and the TVP-VAR. This is achieved using the non-centered parameterization of

Frühwirth-Schnatter and Wagner (2010). We emphasize that the algorithms below do the sparsification

at each draw from the MCMC algorithm, allowing for treatment of uncertainty in the shrinkage step.

Thus, the algorithms are averaging over different sparsified estimators in a manner similar to Bayesian

model averaging.

3.1 The TVP Regression Model

The TVP regression model used in this paper takes the form:

yt = β′tXt + εt

βt = βt−1 +wt,

where all definitions are the same as in (1) except that βt are dynamic (time-varying) regression

coefficients which follow a random walk with wt ∼ N(0K ,V ), where V = diag(v1, . . . , vK) denotes
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the variance-covariance matrix of the state innovations while vj (j = 1, . . . ,K) is a process innovation

variance associated with the jth coefficient.

The non-centered parameterization of this model is given by:

yt =β′0Xt + β̃′t
√
V Xt + εt,

β̃t =β̃t−1 + ηt, ηt ∼N(0K , IK).

with the jth element of β̃t given by β̃jt =
βjt−βj0√

vj
and
√
V = diag(

√
v1, . . . ,

√
vK). This equation can

be written as:

yt = α′Zt + εt, (6)

whereby α = (β′0,
√
v1, . . . ,

√
vK)′, Zt = [X ′t, (β̃t �Xt)

′]′ and � denotes element-wise multiplication.

Conditional on knowing the full history of the states in β̃t, (6) resembles a standard regression model

with a (partially) latent covariate vector Zt.

Well-developed MCMC methods exist to carry out Bayesian posterior and predictive inference

in state space models such as the TVP regression model under various priors. In this paper, we

simulate the full history of the normalized dynamic regression coefficients {β̃t}Tt=1 using the forward-

filtering backward-sampling algorithm proposed in Carter and Kohn (1994) and Frühwirth-Schnatter

(1994). Conditional on β̃t, (6) is a standard regression model, implying that we can simulate α from

a Gaussian full conditional posterior distribution and σ2ε from an inverted Gamma distribution. The

corresponding moments take standard forms and are presented in Appendix B.

We propose to do shrinkage on α using the global-local mixture priors mentioned in the previous

section and described in Appendix A. That is, conditional on a draw of the full history of the states,

{β̃t}Tt=1, we have the regression model given in (6), and shrinkage can be done exactly as described

in the preceding section. For each of the global-local mixture priors we consider, MCMC methods

for drawing α and σ2ε , conditional on draws of the states exist. For the Dirichlet-Laplace prior we

follow the methods of Bhattacharya et al. (2015). For the NMIG specification, we adopt the algorithm

proposed in Ishwaran and Rao (2005) while for the Horseshoe, the MCMC algorithm developed in

Makalic and Schmidt (2016) is used. Since the Normal-Gamma prior nests the Bayesian Lasso, we

adopt the algorithm put forth in Griffin and Brown (2010) (see Appendix A for further details).
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Every draw of α, denoted as α(n), from any of the MCMC algorithms is sparsified using SAVS.

Applying the SAVS estimator in (3) to each draw from the posterior of α yields:

γj
(n) = sign

(
α
(n)
j

)
||Zj ||−2

(
|α(n)
j | ||Zj ||

2 − κj
)
+
, for n = 1, . . . , N (7)

where Zj denotes the jth column of Z = (Z1, . . . ,ZT )′, κj = |α(n)
j |−2 and N denotes the number of

post burn-in MCMC draws. This procedure effectively allows for uncertainty quantification and the

computation of potentially non-linear functions of the sparsified parameters. Thus, one can think of our

proposed procedure as an approximate MCMC algorithm which draws from the sparsified conditional

posterior p(γ|α,Z).2 Hence, forecasts produced will average over different sparsified models. That is,

one MCMC draw will lead to one particular sparsified model which is used for forecasting, another draw

may choose another sparsified model to produce forecasts. Hence, what we are proposing is similar

in spirit to Bayesian model averaging. Of course, it is possible to use the SAVS algorithm directly

on the posterior mean of α as is done by Hahn and Carvalho (2015) and Ray and Bhattacharya

(2018). This would be similar in spirit to a Bayesian model selection strategy where a single sparsified

model was chosen for forecasting. But this would ignore model uncertainty and, in addition, would

be problematic since Zt is partially latent.

Another point worth emphasizing about our algorithm is that it is fast. Relative to the compu-

tational time required to do MCMC, adding the SAVS step increases the computational burden by a

trivial amount. For any empirical specification where MCMC is possible, our proposed algorithm is

also possible. Of course, if K is too large, then MCMC methods may be computationally infeasible.

In such a case, variational Bayesian methods may be a practical alternative (see Koop and Korobilis,

2018). But with variational Bayes methods, the SAVS algorithm would be applied on the approximate

posterior mean and model uncertainty ignored.3

3.2 The TVP-VAR

The shrink-then-sparsify algorithm we propose for the TVP regression can be extended to handle the

TVP-VAR in a straightforward fashion. The idea is to transform the TVP-VAR so that the error

2The algorithm is approximate since σ2
ε does not play a role in the SAVS algorithm. If desired, after each sparsification,

one could take a draw of σ2
ε conditional on the sparsified estimates.

3It would be possible to surmount this drawback of variational Bayes by first using variational Bayes to obtain an
approximation to the posterior and then applying the SAVS algorithm to draws from this approximation. But this would
be computationally demanding, thus undermining the main advantage of variational Bayes.
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covariance matrix in the measurement equation is diagonal. Then the TVP regression algorithm of

the preceding sub-section can be applied one equation at a time. Equation-by-equation estimation of

VARs is done in several recent papers using transformations similar to the one used here (see, e.g.,

Carriero et al., 2016; Kastner and Huber, 2017; Koop et al., 2019) and the reader is refered to these

papers for further details about the computational advantages of this approach. With macroeconomic

data it is often important to add stochastic volatility, which leads us to the TVP-VAR-SV specification

described in this section.

Let yt be an M × 1 vector of endogenous variables for t = 1, . . . , T . The TVP-VAR-SV can be

written as:

yt = (IM ⊗Xt)βt + εt, (8)

where Xt = (y′t−1, . . . ,y
′
t−P , 1)′ contains the P lags of yt and an intercept, βt is the vector K =

M(MP + 1) coefficients at time t which is assumed to evolve according to a multivariate random

walk. The errors are independent over time with εt ∼ N(0M ,Σt). Σt is the time-varying error

covariance matrix with

Σt = UtHtU
′
t .

Let Ut denote a lower uni-triangular matrix and Ht = diag(eh1t , . . . , ehMt). The M(M − 1)/2 free

elements in Ut follow independent random walks while the hjt’s are log-volatilities that follow AR(1)

processes,

hjt = µj + ρj(hjt−1 − µj) + ηt, ηt ∼N(0, σ2η). (9)

Here, we let µj denote the unconditional mean, ρj the persistence parameter and σ2η the error variance

of the log-volatility process. The prior specification on the parameters of the log-volatility equation

closely follows Kastner and Frühwirth-Schnatter (2014). Specifically, we use a zero mean Gaussian

prior with variance 102 on µj , a Beta prior on
ρj+1
2 ∼ B(25, 5) and a Gamma prior on σ2η ∼ G(1/2, 1/2).

The Gamma prior translates into a Gaussian prior on ±ση with zero mean and unit variance. In the

MCMC algorithm, the full history of hjt as well as the parameters of equation (9) are obtained

using the algorithm proposed in Kastner and Frühwirth-Schnatter (2014). This algorithm exploits the

centered and non-centered parameterization of the non-linear state space model to increase sampling

efficiency and samples the full history of the log-volatilities from a (T − 1)-dimensional multivariate

Gaussian.
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As noted in Carriero et al. (2016); Kastner and Huber (2017); Koop et al. (2019), computation is

greatly simplified if the model is transformed so that the errors in different equations are independent

of one another. This can be achieved by augmenting the ith equation in the system with the contem-

poraneous values of the first i− 1 elements in yt. That is, if yit is the ith variable (for i > 1), we can

write the TVP-VAR-SV as a set of M unrelated TVP regressions:

yit = X ′tβit +

i−1∑
j=1

uij,tyjt + ηit, ηit ∼N(0, ehit), (10)

where ηit and ηjt are independent for i 6= j, βit denotes the elements of βt in the ith equation and

uij,t are the elements of U−1t for i = 2, . . . ,M ; j = 1, . . . , i− 1.

We then write the TVP-VAR-SV using the non-centered parameterization. For equation i we

obtain:

yit = X ′tβi0 + (

√
V β
i Xt)

′β̃it +

i−1∑
j=1

uij,0yjt +

i−1∑
j=1

√
vuij ũij,tyjt + ηit, ηit ∼N(0, ehit). (11)

Here, we let
√
V β
i = diag

(√
vβi1, . . . ,

√
vβiK

)
and

√
vuij denotes the standard deviation of the error

in the random walk state equation for the jth VAR coefficient in the ith equation. Similarly,
√
vuij is

the standard deviation for the random walk state equation for the elements of Ut. Thus, β̃it and ũij,t

are the states for equation i and the shocks in the corresponding state equations have unit standard

deviation.

Since the errors in the different equations are independent of one another, estimation of one

equation at a time using the algorithm of the preceding sub-section, including the SAVS step detailed

in (7), can be done. Computation is also sped up since parallelization is feasible. Note also that, since

the coefficients in U−1t are appearing as regression coefficients in (10), these can also be shrunk and

sparsified. In large TVP-VARs, where there are many such error covariance terms, this is potentially

beneficial for forecasting purposes. Notice that we do not only obtain a sparse error covariance matrix

but also allow for testing whether the corresponding free elements are time-varying or constant.
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4 Evidence Using Artificial Data

In this section, we present evidence on the performance of the proposed methodology using artificial

data generated from different TVP regression models. Across the different data generating processes

(DGPs), the covariates are drawn from a Uniform distribution bounded between −1 and 1. The

βt’s are generated using the non-centered parameterization with β0 ∼ N(0K , 0.1
2IK) and ±√vj ∼

N(0, 0.12), j = 1, . . . ,K, while differing percentages of the elements in α are randomly set to zero.

The measurement error variance σ2ε is set equal to 0.12.

Before presenting results using repeated samples, the main features of sparsification are illustrated

in Figure 1. The results in the three panels of the figure are based on the Horseshoe prior and use

three different single artificial data sets obtained by simulating T = 400 observations from a large

(K = 30) dynamic regression model. Figure 1(a) plots posterior features of βjt against time for a

case where it is zero (i.e. the DGP is one where jth regressor is not selected) using a non-sparsified

and sparsified estimator. Note that the sparsified estimator is precisely correct, it sets βjt = 0 with

probability one. Thus, it exactly coincides with the true value and cannot be seen in Figure 1(a). The

non-sparsified posterior distribution, although the posterior mean is very close to the correct value,

has a credible interval that is non-negligible. This reflects estimation uncertainty and could spill

over into poor forecast performance using the non-sparsified posterior. The performance of the SAVS

algorithm when βjt is a non-zero constant (i.e. the DGP is one where βjt = βjt−1 for all t) is shown

in Figure 1(b). In this case, the posterior distributions of the sparsified and non-sparsified models

almost coincide. Notice, however, that the credible sets are constant over time for the sparsified model,

indicating that the corresponding element in
√
V is set equal to zero throughout all iterations of the

MCMC algorithm. In contrast, Figure 1(c) illustrates a case where βjt is non-zero and time-varying.

Notice that the sparsified and non-sparsified posterior distributions are close to being identical. In

this case, it is not desirable to sparsify the corresponding elements in α and the SAVS algorithm is

not doing so. Thus, regardless of whether a coefficient is zero, a non-zero constant or time-varying,

this figure indicates that our methods estimate it well. They work better than the non-sparsified

alternative in cases where there is sparsity and equally well in non-sparse cases.

Table 1 presents evidence for the importance of sparsification and shrinkage in TVP regression

models using different data configurations, priors, numbers of regressors and sample sizes. The DGP

described above is modified to reflect varying degrees of sparsity. These different sparsity levels are
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Figure 1: Sparsified and non-sparsified posteriors of βjt for a large time-varying parameter model

(a) DGP with βjt = 0 for all t (b) DGP with βjt = βjt−1 for all
t

(c) DGP with βjt time-varying
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Notes: The dark blue line denotes the true βjt over time, the gray shaded area represents 5th and
95th credible sets of the posterior of βjt under a HS prior. Purple lines represent 5th and 95th credible
sets of the sparsified posterior.

labeled sparse (with 90% zeros in α), moderate (with 70% zeros) and dense (with 30% zeros). To

assess how our techniques perform across model dimensions and length of time series involved, we

consider variants of each sparsity level with K = 5, 15 and 30 explanatory variables and T = 250

and 400 observations. The latter are typical values in quarterly and monthly macroeconomic data

sets. For each DGP, we generate 100 artificial data sets and then run each through a sparsified and

non-sparsified algorithm using each of the five global-local shrinkage priors listed in Section 2. We also

include a non-informative prior (labelled Flat in the table) which does not do shrinkage. Posterior

medians of βt are produced and the absolute value of the difference between these and the true value

used in the DGP is calculated. The figures in Table 1 are averages taken over three dimensions: i)

the 100 simulated data sets, ii) time and iii) the K elements of βt.

Table 1 shows the value of sparsification, particularly with sparse DGPs. With the latter, mean

absolute errors (MAEs) are lower than their non-sparsified counterpart for every prior and choice for

T and K. But even in moderately dense specifications, sparsification lowers MAEs in most cases. In

the dense specification, sparsification does not improve upon the single best performing non-sparsified

model specification. However, in that situation, accuracy differences are found to be negligible.

The benefits of shrinking and sparsifying increase with the number of explanatory variables. Note,

for instance, that the unsparsified Flat prior model does not perform that poorly when K = 3 and 15,
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Table 1: Mean absolute errors between the true realization of the βts and the posterior median

Non-sparsified Sparsified
Sparsity level Flat DL Lasso NG HS NMIG Flat DL Lasso NG HS NMIG

Small (K = 5)
T = 250

Dense 7.97 7.51 8.08 7.33 7.65 7.91 7.85 7.91 8.33 7.48 7.72 8.28
Moderate 4.66 4.59 4.47 4.97 4.27 3.62 4.06 4.53 4.29 5.11 4.30 3.75
Sparse 3.63 3.05 3.46 2.73 3.48 3.33 2.84 2.96 3.04 2.58 3.15 3.17

T = 400

Dense 7.57 7.14 6.89 6.40 7.65 7.03 7.45 7.65 7.15 6.42 7.91 7.46
Moderate 4.41 4.10 4.27 5.13 3.89 4.42 3.94 4.08 4.21 5.05 4.17 4.53
Sparse 2.90 2.74 3.40 2.80 2.44 3.43 2.26 2.64 2.93 2.70 2.19 3.23

Medium (K = 15)
T = 250

Dense 11.60 10.88 9.51 9.39 8.72 9.76 11.32 11.78 9.18 9.24 8.83 10.07
Moderate 3.46 3.98 5.22 3.27 3.64 3.03 2.29 3.48 4.84 2.88 3.39 2.90
Sparse 3.21 1.81 2.44 2.09 1.84 2.04 2.02 1.40 1.48 1.79 1.63 1.55

T = 400

Dense 9.87 10.77 9.60 8.19 8.44 8.72 9.61 11.50 9.70 8.07 8.95 9.41
Moderate 2.93 3.09 3.78 3.62 3.86 3.83 1.99 2.72 3.00 3.20 3.67 3.57
Sparse 2.30 2.14 2.37 1.75 1.27 1.90 1.23 1.89 1.96 1.51 1.08 1.39

Large (K = 30)
T = 250

Dense 15.40 14.18 14.30 12.84 13.97 12.32 15.04 15.14 13.64 12.88 14.06 12.64
Moderate 5.24 3.48 3.84 3.26 2.44 2.38 4.27 2.83 2.74 2.64 2.04 2.11
Sparse 2.53 1.33 2.48 1.36 1.72 1.67 1.17 0.79 1.59 0.97 1.59 1.07

T = 400

Dense 13.71 12.48 12.29 13.50 12.39 11.68 13.33 13.27 11.83 13.22 12.17 12.06
Moderate 4.73 3.43 3.71 4.06 2.64 2.27 3.73 2.79 2.69 3.92 2.38 1.76
Sparse 1.78 1.36 1.47 1.32 0.52 1.43 0.63 0.75 0.60 0.89 0.44 0.78

Notes: The mean is taken over time, over all parameters and over all artificial data sets. All mean absolute errors are
multiplied by 100. Flat refers to a dynamic regression model with a loosely informative prior, DL to the Dirichlet-Laplace
prior, Lasso to the Bayesian Lasso, NG to the Normal-Gamma prior, HS to the Horseshoe, and NMIG to the Normal-mixture
of Inverse Gamma prior.

but displays a weak performance when K = 30. In fact, when K = 3, the Flat prior works quite well

with the sparse specification, provided sparsification is done. This indicates that there are some cases

where sparsification is more important than shrinkage.

The choice of T has little impact on the results. In a regression model with constant parameters,

we would expect sparsification to be less important as the sample size increases since, with longer time

series, the estimation error would decrease. However, with TVP regressions, the number of parameters

is also increasing with the sample size which negates this effect. Thus, even with large numbers of

observations, the researcher working with TVP models can still benefit from sparsification.
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With regards to the different global-local shrinkage priors, no clear pattern emerges where one

performs consistently the best across different specifications. When K = 30 and the DGP is sparse,

DL (for T = 250) and HS (for T = 400) models that are sparsified are the best performers. When

K = 30 and the DGP is dense, the accuracy of both, the DL and the HS prior deteriorates slightly

while the unsparsified NMIG model shows the best performance. Notice that in this situation, accuracy

differences across the sparsified and non-sparsified NMIG specification are, however, quite small.

From this discussion it is apparent that identifying a default prior choice is difficult. One key take

away from this analysis, however, is that if the DGP is sparse, flexible shrinkage specifications such

as the HS, the DL and the NMIG prior in combination with the SAVS algorithm provide accurate

parameter estimates. Overall, the table tells a story of the importance of both shrinkage and sparsity,

especially in large models, with the precise choice of shrinkage prior being of lesser importance.

In the next step, we assess how well the SAVS algorithm identifies true zeros in α. Table 2 shows

average hit rates that measure the percentage of correctly estimated zeros using the SAVS algorithm.

From this table, we observe that irrespective of the priors used, our approach works well in identifying

the true level of sparsity. For sparse situations, the fraction of correctly identified zeros is often above

95% for most shrinkage priors and model sizes considered. In the case of a Flat prior, we observe values

just above 90%, which is remarkable but still well below the percentages observed for the different

shrinkage specifications under scrutiny. This slightly weaker performance can be traced back to the

fact that without shrinkage, values in α are not pushed to zero and the corresponding penalty κj is

too small. Consistent with the findings in Table 1, we find no discernible differences in performance

across the different shrinkage priors, with all of them displaying a strong performance. In fact, in a

sparse setting with K = 30, the SAVS algorithm identifies almost all zeros correctly, with hit rates

being above 99%.

To sum up, this discussion highlights that sparsification improves estimation accuracy. These

improvements tend to increase with model size and the level of sparsity of the DGP. Among the set

of competing shrinkage priors, we find no single best performing specification. In terms of correctly

predicting zeros in α, we found that SAVS works well across all shrinkage priors considered, often

correctly identifying above 99% of the zeros. At this point, and before proceeding to the empirical

application, it is worth emphasizing that our analysis only considers whether our shrink-then-sparsify

approach improves accuracy of point estimates, ignoring a potential bias-variance tradeoff. One key
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Table 2: Average hit rates of the SAVS algorithm across different prior specifications

Sparsity level Flat DL Lasso NG HS NMIG
Small (K = 5)

T = 250

Dense 86.50 73.60 81.30 79.90 78.70 79.60
Moderate 88.40 93.10 92.00 94.10 91.80 91.40
Sparse 90.40 96.10 96.40 96.70 96.40 94.00

T = 400

Dense 85.60 74.80 80.20 83.10 81.50 74.90
Moderate 89.60 92.90 93.40 94.90 93.40 91.10
Sparse 91.70 97.40 96.10 97.60 97.30 95.60

Medium (K = 15)
T = 250

Dense 79.17 77.63 79.37 80.03 79.07 78.23
Moderate 83.93 97.97 95.70 97.87 96.50 96.47
Sparse 91.23 99.17 98.00 99.17 99.47 98.97

T = 400

Dense 82.57 80.40 82.27 82.97 80.73 78.33
Moderate 87.00 98.33 96.47 97.70 96.73 96.67
Sparse 93.97 99.67 98.83 99.57 99.73 98.97

Large (K = 30)
T = 250

Dense 68.57 72.57 76.05 76.05 76.47 75.38
Moderate 72.40 98.83 95.42 97.75 96.93 97.13
Sparse 85.12 99.70 97.73 99.62 99.62 99.55

T = 400

Dense 71.30 78.50 78.35 79.23 77.80 76.37
Moderate 80.68 99.17 96.32 98.57 97.17 97.38
Sparse 91.60 99.82 98.35 99.80 99.65 99.53

Notes: The mean is computed over all parameters and artificial data
sets. Flat refers to a dynamic regression model with a loosely informative
prior, DL to the Dirichlet-Laplace prior, Lasso to the Bayesian Lasso,
NG to the Normal-Gamma prior, HS to the Horseshoe, and NMIG to the
Normal-mixture of Inverse Gamma prior.

finding is that applying SAVS never significantly decreases estimation accuracy and correctly predicts

a large fraction of true zeros. In light of Figure 1, this indicates that, by zeroing out shrunk coefficients,

our approach strongly reduces parameter uncertainty.

5 Forecasting US Macroeconomic Variables

In this section we present results from a forecasting exercise using US quarterly macroeconomic data

taken from the FRED-QD database (see McCracken and Ng, 2016) that span the period from 1959Q1

to 2017Q4. We focus on forecasting GDP, inflation (based on the GDP deflator) and the Fed Funds
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rate (henceforth labeled focus variables). Table 4 provides details on the specific variables included

alongside transformations used.

We use the TVP-VAR-SV of Sub-section 3.2 combined with the same set of global-local shrinkage

priors as in the preceding section. The only specification we do not consider here is the TVP-VAR-SV

with a flat prior since this model performs poorly in out-of-sample forecasting and large dimensions.

For each prior, we use non-sparsified and sparsified versions of the model in order to produce the

forecasts. We forecast with small (M = 3), medium (M = 8) and large (M = 20) data sets and set the

lag length equal to 2. Thus, the dimension of the state space in the TVP-VAR-SVs ranges from being

moderate to huge. Our forecast evaluation begins in 1997Q1 and runs to the end of the sample. We use

root mean squared forecast errors (RMSEs) to evaluate the quality of the point forecasts and average

log predictive likelihoods (LPLs) to evaluate the quality of predictive densities. Both are benchmarked

relative to a VAR-SV with DL prior, a specification that works well for US macroeconomic data (see

Kastner and Huber, 2017). This is identical to the TVP-VAR-SV with DL prior except that the DL

prior now applies directly to the constant VAR coefficients while

√
V β
i and

√
vuij are set equal to

zero for all i, j. The VAR is transformed to allow for equation-by-equation estimation as described in

Sub-section 3.2.

Before presenting the results of our forecasting exercise, we present Figure 2 which sheds light on

which variables our algorithm is choosing to predict the focus variables. This figure is produced using

the large data set and the HS prior. Previously, we have discussed how doing sparsification for each

MCMC draw shares similarities with Bayesian model averaging. For one draw a certain sparsified

model will be used to forecast, at another draw a different model will be used. This feature allows us

to calculate posterior inclusion probabilities (PIPs) for each variable. The PIP for a given coefficient

is the proportion of MCMC draws for which the coefficient is not set to zero. Figure 2 is a heatmap

of these PIPs at the end of the sample. Remember that, in the non-centered parameterization of

the TVP-VAR-SV (see equation (11)), there are coefficients which appear on the initial states which

are constant coefficients. The upper panel of the figure relates to these. The remaining coefficients

determine whether there is time-variation relative to the constant coefficients. The lower half of the

figure relates to these.

Figure 2 shows that our methods are inducing a high degree of sparsity in the TVP-VAR-SV in

that most of the PIPs are near zero. However, a few of them are not. In terms of the VAR coefficients
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there is only one coefficient which is always selected (i.e. has a PIP of one). This is the first lag of

the 1-year Treasury Bill rate in the equation for the Fed Funds rate. However, an appreciable number

of other predictors have PIPs that are substantially above zero but much less than one. In terms of

the error covariance matrix, a similar pattern emerges. There is only one error covariance term which

is non-zero in every MCMC draw.4 This is the covariance between the errors in the equations for

two different inflation measures. However, there are several other error covariances with PIPs that

are substantially above zero, even if they are below one. We stress that such a finding would not be

possible if we were to use the SAVS algorithm directly on the posterior mean as opposed to using it

on each MCMC draw. In the former case every PIP would be either zero or one with no values in

between.

These patterns are consistent with those found in Giannone et al. (2017) who conclude ”there

seems to be a lot of uncertainty about whether certain predictors should be included in the model, which

results into their selection only in a subset of the posterior draws. These findings reflect a substantial

degree of collinearity among many predictors that carry similar information, hence complicating the

task of structure discovery. In sum, model uncertainty is pervasive and the best prediction is obtained

as a weighted average of several models.” These features seem to be exactly what our algorithm is

uncovering in an automatic fashion.

Finally, it is worth noting that there is evidence of time variation in several of the coefficients and

our algorithm is automatically deciding which ones to allow to be time-varying. That is most of the

PIPs which are appreciably above zero in the top half of the figure are also above zero in the bottom

half. This pattern indicates a non-zero coefficient zero which is time varying. But our method also

allows for a coefficient to be non-zero but constant. There are some cases which provide evidence of

this. For instance, in the GDP growth equation the first lag of SP500 stock returns has a PIP which

is appreciably above zero in the top half of the figure, but is much closer to zero in the bottom half of

the figure. This pattern indicates support for a constant coefficient on this predictor.

The evidence in Figure 2 suggests that shrinking then sparsifying is working in a sensible fashion.

But the key test of our methodology is how well it forecasts. Table 3 presents the results of our

forecasting exercise. A comparison of each set of sparsified forecasts to its non-sparsified counterpart

shows the benefits of our shrink-then-sparsify strategy, particularly in large models. For M = 8 and

4Note that the other green areas refer to the diagonal elements of Ut.
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Figure 2: Heatmaps of posterior inclusion probabilities (PIPs) for the three focus variables in t =
2017 : Q4

PIPs for Constant Coefficients (βi0 and uij,0 in equation 11)
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M = 20, sparsification leads to substantial improvements in both RMSEs and LPLs in almost every

case. These improvements are particularly noticeable for GDP forecasting for the one-step-ahead

forecasts. In general, the benefits of sparsification are largest when using the DL or Lasso priors. For

M = 3 the benefits of sparsification are less pronounced. In terms of RMSEs, there seems to be no

benefits of sparsification, although it does lead to slight improvements in the density forecasts even for

this already fairly parsimonious case. This smaller accuracy premium from sparsification can be traced

back to the fact that, in small models, the increases in the predictive variance that arise from posterior

uncertainty surrounding shrunk estimates are small relative to the variance contribution arising from

the reduced-form shocks. In larger models, parameter uncertainty eventually accumulates and this

seems to be detrimental for forecasting accuracy.

In relation to the benchmark VAR-SV model, it is interesting to note that it is inferior to the

TVP-VAR-SV models for the small and medium data sets. Clearly, addition of time-variation in the

VAR coefficients helps improve forecasts in these cases. However, in the large data set, the evidence

is mixed. In this case, the RMSEs produced by the TVP-VAR-SV are substantially better than those

produced by the VAR-SV. However, the density forecasts are not. This could be due to the fact that

there is typically a tradeoff between model dimension and parameter change. In small models, there is

often a need for a high degree of parameter change to adequately fit patterns in the data and alleviate

potential omitted variable biases. But in larger models, the information provided by the additional

variables can fit these patterns, leaving less of a role for parameter change. Thus, in high dimensional

cases the VAR-SV might be adequate and the extra flexibility provided by a TVP-VAR-SV may not

be required. Of course, if the correct specification has a zero coefficient, the non-sparsified approach

would try and estimate the time-varying coefficient to be constant over time. But, as illustrated in

Figure 1, estimation uncertainty (although reduced) would still exist which could potentially hurt the

forecasting performance of our approach. Sparsification as done in this paper clearly helps, but in the

large data set there are still some cases where the VAR-SV is superior. In such cases, a simple extension

of our shrink-then-sparsify approach could help. In this paper, we have focused on sparsifying α in

equation (6). But any function of the parameters of a model could be sparsified in the same manner

and, in particular, sparsifying the change in the states would be possible. This would lead to the

constancy of a coefficient over certain periods in time while allowing for movements in other points in

time when this kind of sparsification is applied.
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Table 3: Relative root mean square errors (RMSEs) to a large BVAR-SV with a DL prior: 1997Q4 to
2017Q4

Non-sparse Sparse
DL Lasso NG HS MNIG DL Lasso NG HS MNIG

Small (m = 3)
One-step-ahead
GDPC1 0.516 0.528 0.526 0.523 0.517 0.526 0.529 0.53 0.533 0.524

(0.209) (0.188) (0.194) (0.2) (0.223) (0.228) (0.231) (0.227) (0.222) (0.229)
GDPCTPI 0.86 0.868 0.867 0.861 0.87 0.883 0.915 0.912 0.903 0.89

(0.134) (0.125) (0.122) (0.125) (0.125) (0.114) (0.075) (0.076) (0.085) (0.105)
FEDFUNDS 0.837 0.858 0.843 0.83 0.832 0.814 0.827 0.826 0.818 0.827

(0.495) (0.466) (0.509) (0.547) (0.554) (0.542) (0.564) (0.583) (0.604) (0.603)
Four-step-ahead
GDPC1 0.512 0.512 0.51 0.507 0.533 0.547 0.543 0.545 0.548 0.545

(0.516) (0.501) (0.507) (0.514) (0.529) (0.542) (0.553) (0.545) (0.547) (0.537)
GDPCTPI 0.986 0.979 0.981 0.981 0.986 0.988 0.987 0.986 0.983 0.987

(0.091) (0.099) (0.098) (0.099) (0.088) (0.081) (0.072) (0.071) (0.073) (0.079)
FEDFUNDS 0.745 0.753 0.745 0.743 0.758 0.763 0.734 0.738 0.742 0.769

(0.457) (0.431) (0.454) (0.495) (0.488) (0.466) (0.468) (0.477) (0.505) (0.499)

Medium (m = 8)
One-step-ahead
GDPC1 0.659 0.647 0.651 0.619 0.534 0.491 0.497 0.494 0.487 0.469

(0.056) (0.081) (0.091) (0.14) (0.199) (0.237) (0.273) (0.273) (0.277) (0.273)
GDPCTPI 0.874 0.867 0.858 0.86 0.859 0.876 0.912 0.907 0.908 0.881

(0.106) (0.126) (0.134) (0.137) (0.147) (0.132) (0.064) (0.074) (0.089) (0.124)
FEDFUNDS 0.854 0.872 0.856 0.824 0.82 0.78 0.785 0.79 0.79 0.785

(0.273) (0.327) (0.408) (0.552) (0.464) (0.401) (0.546) (0.581) (0.646) (0.593)
Four-step-ahead
GDPC1 0.616 0.63 0.62 0.587 0.535 0.553 0.549 0.548 0.552 0.551

(0.22) (0.272) (0.297) (0.377) (0.438) (0.524) (0.545) (0.547) (0.533) (0.513)
GDPCTPI 0.985 0.98 0.979 0.98 0.984 0.995 0.983 0.987 0.983 0.985

(-0.001) (0.058) (0.068) (0.096) (0.086) (0.07) (0.025) (0.033) (0.054) (0.067)
FEDFUNDS 0.831 0.837 0.814 0.747 0.742 0.771 0.738 0.734 0.735 0.75

(0.262) (0.297) (0.372) (0.46) (0.372) (0.417) (0.443) (0.46) (0.448) (0.368)

Large (m = 20)
One-step-ahead
GDPC1 1.013 0.851 0.875 0.816 0.676 0.662 0.573 0.551 0.531 0.513

(-0.351) (-0.32) (-0.196) (-0.002) (0.068) (-0.067) (-0.004) (0.096) (0.207) (0.209)
GDPCTPI 1.123 1.157 1.17 1.031 0.909 1.011 1.063 1.133 0.941 0.912

(-0.054) (-0.016) (-0.015) (0.034) (0.064) (0.018) (0.011) (-0.024) (0.014) (0.033)
FEDFUNDS 1.264 1.655 1.442 1.055 0.865 1.036 1.561 1.418 0.891 0.783

(-0.55) (-0.692) (-0.473) (0.229) (0.17) (-0.313) (-0.556) (-0.295) (0.559) (0.559)
Four-step-ahead
GDPC1 0.893 0.73 0.627 0.513 0.529 0.654 0.557 0.556 0.545 0.567

(-1.185) (-1.039) (-0.598) (0.191) (0.361) (-0.332) (-0.167) (0.174) (0.57) (0.534)
GDPCTPI 1.063 1.116 1.136 1.022 0.997 1.018 1.034 1.163 0.994 0.987

(-0.81) (-0.652) (-0.331) (0.003) (0.055) (-0.283) (-0.261) (-0.123) (0.003) (0.038)
FEDFUNDS 0.937 1.229 1.269 0.812 0.856 0.86 0.844 1.001 0.815 0.835

(-1.452) (-1.489) (-1.037) (0.082) (0.089) (-0.723) (-0.916) (-0.488) (0.267) (0.228)

Notes: Numbers in parentheses refer to the average log predictive likelihoods (LPLs) vis-á-vis the BVAR-SV with
a DL prior. DL refers to a TVP-VAR-SV with a Dirichlet-Laplace prior, Lasso to the Bayesian Lasso, NG to the
Normal-Gamma prior, HS to the Horseshoe, and NMIG to the Normal-mixture of Inverse Gamma prior.

The results in Table 3 highlight that, when the full hold-out period is considered, sparsification

improves predictive accuracy relative to a non-sparsified model specification. The magnitude of these

improvements, however, depends on model size. In the next step, we ask whether accuracy differences

could also be specific to certain periods in time. To this end, Figure 3(a) shows the evolution of

the log predictive Bayes factor between the sparsified and non-sparsified large-scale TVP-VAR-SV

with the HS prior over the hold-out period.5 This Bayes factor is obtained by evaluating the one-

step-ahead predictive density for the three focus variables jointly after integrating out the remaining

5Comparable figures for other shrinkage priors reveal similar patterns. Thus. for the sake of brevity, we discuss the
results for the HS prior exclusively.
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variables. To investigate whether the gains in density forecasting performance stem from capturing

higher order moments in the predictive distribution or from a more precise point forecast, Figure 3(b)

shows cumulative squared one-step-ahead forecast errors averaged across the focus variables over time.

Figure 3: Performance differences between a sparsified and non-sparsified TVP-VAR-SV with a HS
prior

(a) Evolution of log predictive Bayes factor (sparse versus non-sparse)
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(b) Evolution of cumulative squared forecast errors

Small Medium Large

2000 2005 2010 2015

0
10

20
30

40
50

2000 2005 2010 2015

0
10

20
30

40
50

2000 2005 2010 2015

0
20

40
60

80
10

0

Notes: The log-predictive Bayes factor between the sparsified and non-sparsified model is obtained by
considering the joint one-step-ahead predictive density for the three focus variables and the squared
forecast errors are averages across the one-step-ahead forecast errors for the focus variables. The
black line in panel (b) refers to the sparsified squared forecast error while the red line denotes the
non-sparsified model. The gray shaded areas refer to NBER reference recessions in the US.

Figure 3(a) indicates that accuracy premia from sparsification tend to vary significantly over the

business cycle. During expansionary stages, sparsification yields modest (in the case of the medium-
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sized model) to sustained (in the case of the large model) improvements in density forecasting per-

formance relative to the non-sparsified competitor. For the small-scale TVP-VAR-SV, accuracy gains

are more muted during expansionary periods. During recessions, in contrast, sparse models tend to

be outperformed by their non-sparsified counterparts. Our conjecture is that this stems from the fact

that during turbulent times, the sparsified predictive distributions feature a smaller variance, making

it harder to capture outlying observations and thus translating in lower log predictive likelihoods.

Our conjecture is confirmed when focusing on point forecasts. In terms of point predictions, we

observe that forecast errors are almost identical in the period up to the global financial crisis. During

the recession in 2008/2009, forecast errors increase markedly but slightly less so for the sparsified model

and for the medium and large dataset. This suggests that the drop in the log predictive Bayes factor

is mainly driven by higher order moments, implying that while the accuracy of the point prediction

increases, adverse movements in the corresponding predictive variance offset this gain.

6 Conclusions

Global-local shrinkage priors have enjoyed great popularity in over-parameterized regressions and

VARs involving large numbers of variables. And, increasingly, they have been used with TVP versions

of these models which are potentially even more over-parameterized. Use of such priors can potentially

reduce estimation error and improve forecasts. However, estimation error is not completely eliminated

and it is possible that further improvements in forecasting performance can be achieved by adding

an additional sparsification step to shrunk estimates. In this paper, we have developed methods for

doing so. In an artificial data exercise, we have shown that our shrink-then-sparsify approach to TVP

regression leads to more accurate estimates for a variety of DGPs. Particularly large gains are found

in sparse DGPs. In a macroeconomic forecasting exercise, adding sparsification to shrinkage also leads

to substantial improvements in forecast performance.
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Appendix A Global-local Shrinkage Priors

The first four sub-sections of this appendix provide relevant details on the prior setup, briefly discussing

key features of the used priors, hyperparameter choices used, and relevant information necessary to

perform posterior inference.

A.1 The Dirichlet-Laplace Prior

The DL prior, originally proposed in Bhattacharya et al. (2015), assumes that each element in α,

αj (j = 1, . . . , 2K), follows a Gaussian distribution,

αj |ωj , ξj , λ ∼N(0, ωjξ
2
j ζ

2),

with

ωj ∼ E(1/2), ξj ∼ D(a, . . . , a), ζ ∼ G(2Ka, 1/2)

where ωj is a variable-specific scaling parameter that features an exponentially distributed prior,

with E denoting the exponential distribution, ξj denotes yet another local shrinkage parameter with

ξ = (ξ1, . . . , ξ2K)′ being bounded to the (2K − 1)-dimensional simplex (i.e. ξj ≥ 0 and
∑

j ξj = 1).

We use a Dirichlet distributed prior with intensity parameter a on ξj . Finally, ζ is a global shrinkage

term that follows a Gamma distribution. Notice that the relationship between this prior hierarchy

and the general form provided in equation (2) can be seen by defining φj = ωjξ
2
j and λ = ζ2.

Bhattacharya et al. (2015) show within the stylized normal means problem that the optimal value of

a is specified to be (2K)−(1+ϕ) with ϕ being a positive number close to zero. Since this hyperparameter

plays a crucial role in determining the shrinkage behavior of the DL prior, we estimate it using a prior

which is a uniform distribution that is bounded between (2K)−1 and 1/2.

Posterior simulation can be carried out using a slightly modified variant of the MCMC algorithm

proposed in Bhattacharya et al. (2015). The full conditional posterior distribution of ωj follows an

inverse Gaussian distribution:

ωj |αj , ξj , ζ ∼ iG

(
ζ
ξj
|αj |

, 1

)
.
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The global shrinkage parameter ζ follows a generalized inverted Gaussian (GIG) distribution,

ζ|α, ξ ∼ GIG

2K(a− 1), 1, 2
2K∑
j=1

|αj |
ξj

 .

Moreover, we draw the second set of local scaling parameters ξj by introducing auxiliary variables Tj

that follow a GIG distribution:

Tj |a, αj ∼ GIG(a− 1, 1, 2|αj |).

We then set ξj = Tj/
∑2K

i=1 Ti to obtain a valid draw from the full conditional posterior of ξj .

To simulate from the conditional posterior of a, we employ a Metropolis Hastings algorithm with

a Gaussian proposal distribution truncated between (2K)−1 and 1/2. The variance of the proposal

distribution is tuned during the first 20 percent of the burn-in stage of the MCMC sampler such that

the acceptance rate is between 20 and 40 percent.

A.2 The Normal-Gamma Prior and the Lasso

As compared to the DL prior, the NG prior proposed in Griffin and Brown (2010), consists of a single

group of idiosyncratic scaling factors φj and a global shrinkage parameter λ = 1/λ̃. We assume that

each αj follows a zero mean Gaussian distribution a priori:

αj |φj , λ̃ ∼N(0, φj), φj |λ̃ ∼ G(ϑ, ϑλ̃/2), λ̃ ∼ G(dλ̃, eλ̃).

Here, we let ϑ denote a hyperparameter that controls the tail behavior of the prior, with smaller values

of ϑ leading to heavier tails and increasing mass is placed on zero while larger value do the opposite.

dλ̃ and eλ̃ are hyperparameters that control the overall degree of shrinkage, with values close to zero

implying heavy shrinkage towards zero.

One key feature of the NG prior is that it nests the Bayesian Lasso of Park and Casella (2008)

by setting ϑ = 1. Since ϑ plays a crucial role, we follow Griffin and Brown (2010) and Huber and

Feldkircher (2019) and introduce an Exponential prior on ϑ:

ϑ ∼ Exp(ϑ).
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ϑ is set equal to 1, pushing the prior towards the Bayesian Lasso. Moreover, we set dλ̃ = eλ̃ = 10−4,

implying a disperse prior on λ̃ and thus being consistent with heavy shrinkage (by allowing large values

of λ̃).

The hierarchical structure of the prior yields closed-form full conditionals for φj and λ̃. The local

scaling parameters φj follow a GIG distribution:

φj |λ̃, αj ∼ GIG

(
ϑ− 1

2
, ϑλ̃, α2

j

)
.

For the global shrinkage parameter, we obtain a Gamma-distributed full conditional posterior distri-

bution:

λ̃|φ1, . . . , φ2K , ϑ ∼ G

(
dλ̃ + ϑ2K, eλ̃ +

ϑ

2

2K∑
i=1

φi

)
.

Finally, we obtain draws from the conditional posterior of ϑ by setting up a random walk MH algorithm

in terms of log ϑ (see Griffin and Brown, 2010).

A.3 The Horseshoe Prior

For the HS prior of Carvalho et al. (2010), we consider the representation based on auxiliary variables

proposed in Makalic and Schmidt (2016). The corresponding prior hierarchy is given by

αj |λ, φj ∼N(0, φjλ), φj ∼ G−1(1/2, 1/νj), λ ∼ G−1(1/2, 1/ϕ),

whereby νj and ϕ denote auxiliary variables and G−1 denotes the inverse Gamma distribution. The

auxiliary variables also follow inverse Gamma distributions,

ν1, . . . , ν2K , ϕ ∼ G−1(1/2, 1).

This representation of the HS prior allows for straightforward updating of the local and global scaling

parameters and involves sampling from inverted Gamma distributions exclusively. The corresponding

ECB Working Paper Series No 2325 / November 2019 29



full conditional posterior distributions are

φj |αj , λ, νj ∼ G−1

(
1,

1

νj
+
α2
j

2λ

)

λ|αj , φj , ϕ ∼ G−1

(
2K + 1

2
,

1

ϕ
+

1

2

2K∑
i=1

α2
i

φj

)
.

The conditional posteriors of the auxiliary variables are given by

νj |φj ∼ G−1

(
1, 1 +

1

φ2j

)
,

ϕ|λ ∼ G−1
(

1, 1 +
1

λ

)
.

A.4 The Normal-mixture of Inverse Gamma Prior

The NMIG prior of Ishwaran and Rao (2005) extends the original SSVS prior proposed in George and

McCulloch (1993, 1997) along several dimensions. To set the stage, we use a mixture of Gaussians

prior distribution on αj :

αj |δj , τ2j ∼N(0, τ2j )δj + N(0, cτ2j )(1− δj),

where δj denotes a Bernoulli random variable with prior probability Prob(δj = 1) = p while c is

a constant close to zero and τ2j is a coefficient-specific scaling factor. Following Ishwaran and Rao

(2005), we specify an inverse Gamma prior on τ2j and a Beta distributed prior on p:

τ2j ∼ G−1(dτ , eτ ),

p ∼ B(dp, ep),

with dτ , eτ , dp and ep denoting hyperparameters. Notice that this specification implies conditional

prior independence between the indicators δj . However, the common prior inclusion probability p

serves as a common factor, implying that marginally, the indicators are dependent.

Ishwaran and Rao (2005) notice that after integrating out τ2j and p, the two components in the prior

follow t-distributions. The hyperparameter dτ controls the degrees of freedom of the marginal prior

while the variances are given by ceτ/dτ (for the spike component) and eτ/dτ (for the slab component).

In the empirical applications, we set ep = dp = 1, implying a Uniform prior on p and c = 2.5/105.
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Moreover, we set dτ = 5, leading to 10 degrees of freedom and eτ = 4. This is the benchmark prior

setup as specified in Malsiner-Walli and Wagner (2011).

For this prior specification, all conditional posterior distributions are available in closed form. The

full-conditional posterior of δj follows a Bernoulli distribution with posterior probability pj given by:

pj = Prob(δj = 1|αj , τ2j , p) =

1
τ2
j

exp

(
−1

2

α2
j

τ2
j

)
1
τ2
j

exp

(
−1

2

α2
j

τ2
j

)
p+ 1

cτ2
j

exp

(
−1

2

α2
j

cτ2
j

)
(1− p)

.

The scaling factors τ2j follow an inverted Gamma distribution

τ2j |α2
j , δj ∼ G−1

(
dτ +

1

2
, eτ +

α2
j

δj + (1− δj)c

)
.

Finally, the posterior distribution of p is a Beta distribution:

p|δ1, . . . , δ2K ∼ B

dp +
2K∑
j=1

δj , ep + 2K −
2K∑
j=1

δj

 .

Appendix B Full Conditional Posterior Simulation

For the dynamic regression models used in the main body of the text we use a relatively standard

MCMC algorithm. Since we estimate the TVP-VAR-SV on an equation-by-equation basis, we describe

the MCMC algorithm for the TVP regression model only. However, it is worth noting that all priors

described in the previous subsection are specified to be equation-specific. This implies that instead of

having a single global shrinkage parameter λ, each equation features its own global (equation-specific)

shrinkage parameter. Moreover, one additional difference is that the dynamic regression model in

Section 3 features homoscedastic errors. In the TVP-VAR case, we allow for stochastic volatility,

implying that the MCMC algorithm differs slightly.

Our posterior simulator cycles between the following steps:

1. Simulate the full-history of β̃t, conditional on the remaining parameters, using the forward-

filtering backward-sampling algorithm proposed in Carter and Kohn (1994) and Frühwirth-

Schnatter (1994) while exploiting the non-centered parameterization.
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2. Sample the error variances from an inverted Gamma full conditional posterior distribution:

σ2ε |• ∼ G−1

(
dσ + T/2, eσ +

1

2

T∑
t=1

(yt −α′Zt)2
)
.

where the • indicates conditioning on all parameters and the data.

3. Conditional on {β̃t}Tt=1 and σ2ε , the conditional posterior of α takes a multivariate Gaussian

form:

α|• ∼N(α,Ω),

with

Ω = (σ−2ε Z
′Z + Ω−1)−1,

α = Ω
(
σ−2ε Z

′y
)

where Z is a T × 2K matrix with the tthrow equal to Z ′t. Likewise, y = (y1, . . . , yT )′ is a T -

dimensional vector. Ω denotes a diagonal prior variance-covariance matrix with typical element

depending on the specific shrinkage prior chosen.

4. Depending on the global-local shrinkage prior adopted, construct the matrix Ω based on the

conditional posterior distributions outlined in Appendix A.

In case we use a stochastic volatility specification for the error variances, we use the algorithm proposed

in Kastner and Frühwirth-Schnatter (2014) and implemented in the R package stochvol (Kastner,

2016). For the VAR case, the main steps of this algorithm remain identical except that the different

steps of the algorithm can be interpreted as being specific to a given equation of the model. In all

applications, we repeat this algorithm 30, 000 times and discard the first 15, 000 draws as burn-in.
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