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Abstract

We propose a novel observation-driven finite mixture model for the study of bank-

ing data. The model accommodates time-varying component means and covariance

matrices, normal and Student’s t distributed mixtures, and economic determinants of

time-varying parameters. Monte Carlo experiments suggest that units of interest can

be classified reliably into distinct components in a variety of settings. In an empirical

study of 208 European banks between 2008Q1–2015Q4, we identify six business model

components and discuss how their properties evolve over time. Changes in the yield

curve predict changes in average business model characteristics.

Keywords: bank business models; clustering; finite mixture model; score-driven

model; low interest rates.

JEL classification: G21, C33.
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Non-technical summary

Banks are highly heterogenous, differing widely in terms of size, complexity, organiza-

tion, activities, funding choices, and geographical reach. Understanding this diversity is

of key importance, for example, for the study of risks acting upon and originating from

the financial sector, for impact assessments of unconventional monetary policies, as well as

for the benchmarking of banks to appropriate peer groups for micro-prudential supervisory

purposes.

This paper proposes a novel statistical model for the study of banking data. The dynamic

framework allows us to robustly classify (cluster) banks into approximately homogeneous

groups. The model accommodates time-varying component means and covariance matrices,

normal and Student’s t distributed mixtures, as well as economic determinants of time-

varying parameters. Extensive Monte Carlo experiments suggest that our model is able to

reliably classify banks into distinct mixture components, as well as to simultaneously infer

the relevant time-varying parameters.

In an empirical study of 208 European banks between 2008Q1–2015Q4, we identify six

business model components and discuss how these adjust to post-crisis financial develop-

ments. We distinguish A) large universal banks, including globally systemically important

banks (G-SIBs), B) international diversified lends, C) fee-based banks, D) domestic diver-

sified lenders, E) domestic retail lenders, and F) small international banks. The global

financial crisis between 2008–2009 had a differential impact on banks with different business

models. We also observe such differences across business model components during the more

recent euro area sovereign debt crisis between 2010–2012.

In addition, we study how banks’ business models adapt to changes in yield curve factors,

specifically the level and slope, as yields fall to approximately zero at the end of our sample.

The yield curve factors are extracted from AAA-rated euro area sovereign bonds based on a

Svensson (1994) model. We find that, as long-term interest rates decrease, banks on average

(across all business models) tend to grow larger, hold more assets in trading portfolios to

offset declines in loan demand, hold more sizeable derivative books, and, in some cases,
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increase leverage and decrease funding through customer deposits. The direction of these

effects – increased size, leverage, complexity, and a less stable funding base – are potentially

problematic and need to be assessed from a financial stability perspective.
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1 Introduction

Banks are highly heterogeneous, differing widely in terms of size, complexity, organization,

activities, funding choices, and geographical reach. Understanding this diversity is of key

importance, for example, for the study of risks acting upon and originating from the financial

sector, for impact assessments of unconventional monetary policies and financial regulations,

as well as for the benchmarking of banks to appropriate peer groups for supervisory pur-

poses.1 While there is broad agreement that financial institutions suffer in an environment

of extremely low interest rates, see e.g. Nouy (2016), it is less clear which types of banks

(business models) are affected the most. A study of banks’ business models at low interest

rates provides insight into the overall diversity of business models, the strategies adopted by

individual institutions, and which types of banks are impacted the most by time variation

in the yield curve.2 We study these questions in a novel modeling framework.

This paper proposes an observation-driven finite mixture model for the analysis of high-

dimensional banking data. The framework accommodates time-varying mean and covariance

parameters and allows us to robustly cluster banks into approximately homogeneous groups.

We first present a simple baseline mixture model for normally distributed data with time-

varying component means, and subsequently consider extensions to time-varying covariance

matrices, Student’s t distributed mixture densities, and economic predictors of time-varying

parameters. We apply our modeling framework to a multivariate panel of N = 208 European

banks between 2008Q1–2015Q4, i.e. over T = 32 quarters, considering D = 13 bank-level

indicator variables for J groups of similar banks. We thus track banking sector data through

1For example, the assessment of the viability and the sustainability of a bank’s business model plays a
pronounced role in the European Central Bank’s new Supervisory Review and Examination Process (SREP)
for Significant Institutions within its Single Supervisory Mechanism; see SSM (2016). Similar procedures
exist in other jurisdictions.

2An improved understanding of the financial stability consequences of low-for-long interest rates is a top
policy priority. For example, Fed Chair Yellen (2014) pointed to “... the potential for low interest rates
to heighten the incentives of financial market participants to reach for yield and take on risk, and ... the
limits of macroprudential measures to address these and other financial stability concerns.” Similarly, ECB
President Draghi (2016) explained that “One particular challenge has arisen across a large part of the world.
That is the extremely low level of nominal interest rates. ... Very low levels are not innocuous. They put
pressure on the business model[s] of financial institutions ... by squeezing net interest income. And this
comes at a time when profitability is already weak, when the sector has to adjust to post-crisis deleveraging
in the economy, and when rapid changes are taking place in regulation.”
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the 2008–2009 global financial crisis, the 2010–2012 euro area sovereign debt crisis, as well

as the relatively calmer but persistent low-interest rate environment of the post-crises period

between 2013–2015. We identify J = 6 business model components and discuss how these

adjust to changes in the yield curve.

In our finite mixture model, all time-varying parameters are driven by the score of the

local (time t) objective function using the so-called Generalized Autoregressive Score (GAS)

approach developed by Creal et al. (2013); see also Harvey (2013). In this setting, the time-

varying parameters are perfectly predictable one step ahead. This feature makes the model

observation-driven in the terminology of Cox (1981). The likelihood is known in closed

form through a standard prediction error decomposition, facilitating parameter estimation

via likelihood-based expectation-maximization (EM) procedures. Our approach extends the

standard score-driven approach of Creal et al. (2013) by using the scores of the EM-based

criterion function rather than that of the usual predictive likelihood function.

Extensive Monte Carlo experiments suggest that our model is able to reliably classify

units of interest into distinct mixture components, as well as to simultaneously infer the

relevant component-specific time-varying parameters. In our simulations, the cluster classi-

fication is perfect for sufficiently large distances between the time-varying cluster means and

sufficiently informative signals relative to the variance of the noise terms.3 This holds under

correct model specification as well as under specific forms of model mis-specification. As the

simulated data become less informative or the time-varying cluster means are closer together,

the share of correct classifications decreases, but generally remains high. Estimation fit and

the share of correct classifications decrease further if we incorrectly assume a thin-tailed

mixture specification when the data are generated by a fat-tailed mixture distribution. As

a result, robust models based on fat-tailed mixtures are appropriate for the fat-tailed bank

accounting ratios in our empirical sample.

We apply our model to classify European banks into distinct business model components.

We distinguish A) large universal banks, including globally systemically important banks

(G-SIBs), B) international diversified lenders, C) fee-based banks, D) domestic diversified

3We use the terms ‘component’, ‘mixture component’ and ‘cluster’ interchangeably.
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lenders, E) domestic retail lenders, and F) small international banks. The similarities and

differences between these components are discussed in detail in the main text. Based on

our component mean estimates and business model classification, we find that the global

financial crisis between 2008–2009 affected banks with different business models differently.

This is in line with findings by Altunbas et al. (2011) and Chiorazzo et al. (2016), who study

U.S.-based institutions.

In addition, we study how banks’ business models adapt to changes in yield curve factors,

specifically level and slope of the yield curve. The yield curve factors are extracted from

AAA-rated euro area sovereign bonds based on a Svensson (1995) model. We find that,

as long-term interest rates decrease, banks on average (across all business models) grow

larger, hold more assets in trading portfolios to offset declines in loan demand, hold more

sizeable derivative books, and, in some cases, increase leverage and decrease funding through

customer deposits. Each of these effects – increased size, leverage, complexity, and a less

stable funding base – are intuitive, but also potentially problematic from a financial stability

perspective. This corroborates the unease expressed in Yellen (2014) and Draghi (2016).

From a methodological point of view, our paper also contributes to the literature on

clustering of time series data. This literature can be divided into four strands. Static

clustering of time series refers to a setting with fixed cluster classification, i.e., each time series

is allocated to one cluster over the entire sample period. Dynamic clustering, by contrast,

allows for changes in the cluster assignments over time. Each approach can be further split

into whether the cluster-specific parameters are constant (static) or time-varying (dynamic).

Wang et al. (2013) is an example of static clustering with static parameters. They

cluster time series into different groups of autoregressive processes, where the autoregressive

parameters are constant within each cluster and cluster assignments are fixed over time.

Fruehwirth-Schnatter and Kaufmann (2008) use static clustering with elements of both

static and dynamic parameters. First, they cluster time series into different groups of re-

gression models with static parameters. Later, they generalize this to static clustering into

groups of different Hidden Markov Models (HMMs), each switching between two regression

models. The HMM can be regarded as a specific form of dynamic parameters for the underly-
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ing regression model. Their method is used in Hamilton and Owyang (2012) to differentiate

between business cycle dynamics among groups of U.S. states. Also Smyth (1996) clusters

time series into groups characterized by different Hidden Markov Models.

Creal et al. (2014) is an example of dynamic clustering with static parameters. They

develop a model for credit ratings based on market data. Their main objective is to classify

firms into different rating categories over time. They therefore allow for transitions across

clusters (dynamic clustering), while the parameters in their underlying mixture model are

kept constant.

Finally, Catania (2016) is an example of dynamic clustering with dynamic parameters.

He proposes a score-driven dynamic mixture model, which relies on score-driven updates

of almost all parameters, allowing for time-varying parameters and changing cluster assign-

ments and time-varying cluster assignment probabilities. Due to the high flexibility of the

model, a large number of observations is required over time. The application in Catania

(2016) to conditional asset return distributions typically has a sufficiently large number of

observations.

Our approach falls in the category of static clustering methods with dynamic parameters.

We use static clustering as banks do not tend to switch their business model frequently over

short periods of time; see e.g. Ayadi and Groen (2015). Also, in contrast to the application

used by for instance Catania (2016), our banking data are observed over only a moderate

number of time points T , while the number of units N and the number of firm characteristics

D are high. Given static clustering, the properties of bank business models are unlikely to

be constant throughout the periods of market turbulence and shifts in bank regulations

experienced in our sample. We therefore require the cluster components to be characterized

by dynamic parameters using the score-driven framework of Creal et al. (2013).

Our paper also contributes to the literature on identifying bank business models. Roeng-

pitya et al. (2014), Ayadi et al. (2014), and Ayadi and Groen (2015) also use cluster analysis

to identify bank business models. Conditional on the identified clusters, the authors discuss

bank profitability trends over time, study banking sector risks and their mitigation, and

consider changes in banks’ business models in response to new regulation. Our statistical
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approach is different in that our components are not identified based on single (static) cross-

sections of year-end data. Instead, we consider a panel framework, which allows us to pool

information over time, leading to a more accurate assessment.

We proceed as follows. Section 2 presents a static and baseline dynamic finite mixture

model. We then propose extensions to incorporate time-varying covariance matrices, as well

as Student’s t distributed mixture distributions, and introduce model diagnostics. Section

3 discusses the outcomes of a variety of Monte Carlo simulation experiments. Section 4

applies the model to classify European financial institutions. Section 5 studies to which

extent banks’ business models adapt to an environment of exceptionally low interest rates.

Section 6 concludes. A Web Appendix provides further technical and empirical results.

2 Statistical model

2.1 Mixture model

We consider multivariate panel data consisting of vectors yi,t ∈ RD×1 of firm characteristics

for firms i = 1, . . . , N and times t = 1, . . . , T , where D denotes the number of observed

characteristics. We model yi,t by a J-component mixture model of the form

yi,t = zi,1 ·
(
µ1,t + Ω

1/2
1,t ei,t,1

)
+ . . .+ zi,J ·

(
µJ,t + Ω

1/2
J,t ei,t,J

)
, (1)

where µj,t and Ωj,t are the mean and covariance matrix of mixture component j = 1, . . . , J at

time t, respectively, ei,t,j is a zero-mean, D-dimensional vector of disturbances with identity

covariance matrix, and zi,j are unobserved indicators for the mixture component of firm i.

In particular, if firm i is in mixture component j then zi,j = 1, while zi,k = 0 for k 6= j.

The posterior expectations of zi,j given the data can be used to classify firms into specific

mixture components later on. We define zi = (zi,1, . . . , zi,J)′ and assume zi has a multinomial

distribution with Pr[zi,j = 1] = πj ∈ [0, 1] and π1 + . . . + πJ = 1. Finally, we assume that

zi and ei,t,j are mutually, cross-sectionally, and serially uncorrelated. We specify the precise

dynamic functional form of µj,t and Ωj,t later in this section using the score-driven dynamics
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of Creal et al. (2013). For the moment, it suffices to note that µj,t and Ωj,t will both be

functions of past data only, and therefore predetermined. Finite mixture models with static

cluster-specific parameters have been widely used in the literature. For textbook treatments,

see, e.g. McLachlan and Peel (2000) and Fruehwirth-Schnatter (2006).

To write down the likelihood of the mixture model in (1), we stack the observations up

to time t, yi,1, . . . ,yi,t, into the matrix Yi,t = (yi,1 · · · yi,t)′ ∈ Rt×D. We also stack the

parameters characterizing each mixture component j, such as the µj,ts and Ωj,ts for all times

t, and any remaining parameters characterizing the distribution of ei,t,j (such as the degrees

of freedom of a Student’s t), into a parameter vector θj(Θ), where Θ gathers all static

parameters of the model. Note that also the multinomial probabilities πj are functions of

Θ, i.e., πj = πj(Θ). However, if no confusion is caused we use the short-hand notation πj

and θj for πj(Θ) and θj(Θ), respectively. The likelihood function is given by a standard

prediction error decomposition as

logL(Θ) =
N∑
i=1

log

[
J∑
j=1

πj · fj(Yi,T ;θj)

]
, (2)

where

fj(Yi,T ;θj) =
T∏
t=1

fj (yi,t | Yi,t−1 ; θj,t) ,

and fj(yi,t | Yi,t−1;θj,t) is the conditional distribution of yi,t = µj,t + Ω
1/2
j,t ei,t,j given the past

data and given the (predetermined) parameters for time t as gathered in θj,t.

Before proceeding, we note that the mixture model in (1) describes the firm characteristics

using time-invariant cluster indicators zi rather than time-varying indicators zi,t. Our choice

follows from the specific application in Section 4. Banks are unlikely to switch their business

model over limited time spans such as ours. For instance, a large universal bank is unlikely

to become a small retail lender from one year to the next, as strategy choices, distribution

channels, brand building, and clientele formation are all slowly varying economic processes.

This is why we opt for static cluster indicators. In a different empirical context, a different

modeling choice might be called for. For example, Creal et al. (2014) consider corporate
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credit ratings, which are much more likely to change over shorter periods of time, such that

some of their specifications use time-varying cluster assignments. To explicitly check whether

the assumption of fixed cluster assignments is supported by our data, we use the diagnostics

developed in Section 2.5. Our findings indicate that the vast majority of banks indeed only

belongs to one cluster for all time points.

Given our choice for static rather than dynamic cluster allocation, it becomes important

to allow for time-variation in the cluster means µj,t (and possibly in the variances Ωj,t). Even

though banks are less likely to switch their business model, the average characteristics of

business models may change over shorter time spans, particularly if such time spans include

stressful periods as is the case in our sample. This allows us to answer questions relating

to how the properties of business models changed, and in particular whether some business

models (and if so, which) increased their risk characteristics during the low interest rate

period we study in Section 4. Such results are also important for policy makers, such as the

Single Supervisory Mechanism in Europe to decide on the riskiness of banks and on adequate

capital and liquidity levels for peer groups of banks.

2.2 EM estimation

As is common in the literature on mixture models, we do not estimate Θ directly by nu-

merically maximizing the log-likelihood function in (2). Instead we use the expectation

maximization (EM) algorithm to estimate the parameters; see Dempster et al. (1977) and

McLachlan and Peel (2000).4 To write down the EM algorithm and formulate the score-

driven parameter dynamics for µj,t and Ωj,t later on, we define the complete data for firm i

as the pair (Yi,T , zi). If zi is known, the corresponding complete data likelihood function is

given by

logLc(Θ) =
N∑
i=1

J∑
j=1

zi,j [log πj + log fj(Yi,T ;θj)] . (3)

4As pointed out by a referee, newer and faster versions of the EM algorithm are available, such as the
ECM algorithm of Meng and Rubin (1993) and the ECME algorithm of Liu and Rubin (1994). All of these
converge to the same optimum. Computation time for the EM was not a major issue in our setting, with
the algorithm typically converging in 15 iterations. We therefore leave such extensions for future work.

ECB Working Paper 2084, June 2017 10



Because zi is unobserved, however, (3) cannot be maximized directly. Following Dempster

et al. (1977), we instead maximize its conditional expectation over zi given the observed data

YT = (Y1,T , . . . ,YN,T ) and some initial or previously determined parameter value Θ(k−1), i.e.,

we maximize with respect to Θ the function

Q(Θ; Θ(k−1)) = E
[
logLc(Θ)

∣∣ YT ; Θ(k−1)
]

= E

[
N∑
i=1

J∑
j=1

zi,j [log πj + log fj(Yi,T ;θj)]

∣∣∣∣∣ YT ; Θ(k−1)

]

=
N∑
i=1

J∑
j=1

P
[
zi,j = 1

∣∣ YT ; Θ(k−1)
]

[log πj + log fj(Yi,T ;θj)] . (4)

The conditionally expected likelihood (4) can be optimized iteratively by alternately updat-

ing the conditional expectation of the component indicators zi (‘E-Step’) and subsequently

maximizing the remaining part of the function with respect to Θ (‘M-Step’).

In the E-Step, the conditional component indicator probabilities are updated using

τ
(k)
i,j := P[zi,j = 1 | YT ,Θ(k−1)] =

π
(k−1)
j fj(Yi,T ;θ

(k−1)
j )

f(Yi,T ; Θ(k−1))
=

π
(k−1)
j fj(Yi,T ;θ

(k−1)
j )∑J

h=1 π
(k−1)
h fh(Yi,T ;θ

(k−1)
h )

. (5)

We again point out that the τ
(k)
i,j s do not depend on time, as banks in our application in

Section 4 are statically assigned to clusters. An alternative would be to use dynamic cluster

assignments as in Catania (2016), in which case the densities fj(Yi,T ;θ
(k−1)
j ) above would

have to be replaced by their time t counterparts fj(yi,t | Yi,t−1 ; θ
(k−1)
j,t ) and would result

in time-specific posterior probabilities τ
(k)
i,j,t; see also the diagnostic statistics introduced in

Section 2.5.

Once the τ
(k)
i,j s are updated, we move to the M-Step. Maximizing Q(Θ; Θ(k−1)) with

respect to πj under the constraint π1 + . . .+ πJ = 1, we obtain

π
(k)
j =

1

N

N∑
i=1

τ
(k)
i,j , j = 1, . . . , J. (6)

The optimization of Q(Θ; Θ(k−1)) with respect to the remaining parameters in Θ can some-

ECB Working Paper 2084, June 2017 11



times be done analytically, for instance in the case of the normal finite mixture model with

static location µj,t ≡ µj and scale Ωj,t ≡ Ωj. Otherwise, numerical maximization methods

need to be used. The E-step and M-step are iterated until the difference L(Θ(k+1))−L(Θ(k))

has converged. The EM algorithm increases the likelihood on each step, and convergence

typically occurs within 15 iterations in our application. After convergence, when Θ has been

estimated, we can use the final τ
(k)
i,j to assign banks to clusters. We do so by assigning bank

i to cluster j which has the highest τ
(k)
i,j across j.

2.3 Normal mixture with time-varying means

As explained in Section 2.1, it is important to allow for time-varying cluster means. We first

do so for the case of a normal mixture with time varying means and constant covariance

matrices. We set fj(yi,t | Yi,t−1;θj,t) = φ(yi,t;µj,t,Ωj), where φ( · ;µ,Ω) denotes a multi-

variate normal density function with mean µ and variance Ω. In this section, we introduce

a version of the score-driven approach of Creal et al. (2013) to the parameter dynamics of

µj,t; compare also Harvey (2013) and Creal et al. (2014). Rather than using the score of the

log-density as in Creal et al. (2013), however, we use the score of the EM criterion in (4) to

drive the parameter dynamics. Our simulation section shows that the score-driven dynamics

can fit various patterns for the cluster means, both in correctly specified and mis-specified

settings.

For simplicity and parsimony, we consider the integrated score-driven dynamics as dis-

cussed in Lucas and Zhang (2016),

µj,t+1 = µj,t + A1sµj,t , (7)

where A1 = A1(Θ) is a diagonal matrix that depends on the unknown parameter vector Θ,

and where sµj,t is the scaled first derivative of the time t EM objective function with respect
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to µj,t. The score is given by

∇µj,t =
∂

∂µj,t

(
N∑
i=1

J∑
j=1

τ
(k)
i,j

[
log πj +

T∑
t=1

log φ(yi,t;µj,t,Ωj)

])

=
∂

∂µj,t

(
N∑
i=1

J∑
j=1

τ
(k)
i,j

[
log πj − 1

2
T log |2πΩj| − 1

2

T∑
t=1

(yi,t − µj,t)′Ω−1
j (yi,t − µj,t)

])

= Ω−1
j

N∑
i=1

τ
(k)
i,j (yi,t − µj,t) . (8)

To scale our score for µj,t, we compute the inverse of the expected negative Hessian

under mixture component j. In particular, we take the derivative of (8) with respect to

the transpose of µj,t, switch sign, and compute the inverse, thus obtain a scaling matrix

Ωj/
∑N

i=1 τ
(k)
i,j . This yields a corresponding scaled score update of the form

µj,t+1 = µj,t + A1 ·
∑N

i=1 τi,j(yi,t − µj,t)∑N
i=1 τi,j

. (9)

This updating mechanism is highly intuitive: the component means are updated by the

prediction errors for that component, accounting for the posterior probabilities that the

observation was drawn from that same component. For example, if the posterior probability

τ
(k)
i,j that yi,t comes from component j is negligible, the update of µj,t does not depend on

the observation of firm i.

We note that we do not scale the score by the inverse Fisher information matrix as

suggested in for instance Creal et al. (2013). So far, there is no optimality theory for the

choice of the scale for the score, and different proposals can be found in the literature.

Computing the information matrix for the mixture model is hard, particularly if we take

into account that also τ
(k)
i,j is a function of yi,t. We can show, however, that our proposed

way of scaling the score collapses to the inverse information matrix if the mixture components

are sufficiently far apart.

All static parameters can now be estimated using the EM-algorithm. Starting from an

initial Θ(k−1) and an initial mean µ
(k−1)
j,1 , we compute µ

(k−1)
j,2 , . . . , µ

(k−1)
jT using the recursion
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(9). We compute the posterior probabilities as

τ
(k)
i,j =

π
(k−1)
j

∏T
t=1 φ

(
yi,t;µ

(k−1)
j,t ,Ω

(k−1)
j

)
∑J

h=1 π
(k−1)
h

∏T
t=1 φ

(
yi,t;µ

(k−1)
ht Ω

(k−1)
h

) . (10)

Next, the M-Step maximizes

N∑
i=1

T∑
t=1

D∑
j=1

τ
(k)
i,j

[
−1

2
log(|2πΩj|)− 1

2
(yi,t − µj,t)′Ω−1

j (yi,t − µj,t)
]
, (11)

with respect to A1 and Ωj. The initial values µj,1 can also be estimated if J and D are not

too large. Otherwise, the number of parameters becomes infeasible. Alternatively, one can

initialize the time-varying means µj,1 by the τi,j-weighted average of the first cross-section(s).

Given the values of J and D in our empirical study, we opt for this latter approach. We set

µj,1 equal to the weighted unconditional sample average in the simulation study, and to the

weighted average of the first cross-section in the empirical application. Given µj,1 and A1,

the optimization with respect to Ωj can be done analytically. The optimization with respect

to A1 has to be carried out numerically.

The E-step and M-step are iterated until convergence. To start up the EM algorithm,

we initialize the weights τi,j randomly. To robustify the optimization algorithm, we use a

large number of random starting values and pick the highest value for the final converged

criterion function.

2.4 Extensions

2.4.1 Time-varying component covariance matrices

This section derives the scaled score updates for time-varying component covariance matrices

Ωj,t. If we also want to endow the time-varying covariance matrices with integrated score

dynamics, we have

Ωj,t+1 = Ωj,t + A2 sΩj,t
, (12)
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where sΩj,t
is again defined as the scaled first partial derivative of the expected likelihood

function with respect to Ωj,t. Following equation (8), the unscaled score with respect to Ωj,t

is

∇Ωj,t
= 1

2

N∑
i=1

τ
(k)
i,j Ω−1

j,t [(yi,t − µj,t)(yi,t − µj,t)′ − Ωj,t] Ω−1
j,t . (13)

Taking the total differential of this expression, and subsequently taking expectations Ej[ · ]

conditional on mixture component j, we obtain

1
2

Ej

[
N∑
i=1

τ
(k)
i,j

(
dΩ−1

j,t (yi,t − µj,t)(yi,t − µj,t)′Ω−1
j,t + Ω−1

j,t (yi,t − µj,t)(yi,t − µj,t)′dΩ−1
j,t − dΩ−1

j,t

)]
=

1
2

N∑
i=1

τ
(k)
i,j dΩ−1

j,t = −

(
N∑
i=1

1
2
τ

(k)
i,j

)
Ω−1
j,t dΩj,t Ω−1

j,t . (14)

Vectorizing (14), we obtain −(1
2

∑N
i=1 τ

(k)
i,j )(Ωj,t⊗Ωj,t)

−1vec(dΩj,t), where vec(·) concatenates

the columns of a matrix into a column vector, and where the negative inverse of the matrix in

front of vec(dΩj,t) is our scaling matrix to correct for the curvature of the score. Multiplying

the vectorized version of (13) by this scaling matrix, we obtain the scaled score

vec(sΩj,t
) =

(
1
2

N∑
i=1

τ
(k)
i,j

)−1

(Ωj,t ⊗ Ωj,t) · vec
(
∇Ωj,t

)
=

(
N∑
i=1

τ
(k)
i,j

)−1

· vec
(
2Ωj,t∇Ωj,t

Ωj,t

)
⇔

sΩj,t
=

∑N
i=1 τ

(k)
i,j [(yi,t − µj,t)(yi,t − µj,t)′ − Ωj,t]∑N

i=1 τ
(k)
i,j

. (15)

The estimation of the model can be carried out using the EM algorithm as before, replacing

Ωj by Ωj,t in equations (10)–(11).

2.4.2 Student’s t distributed mixture

This section robustifies the dynamic finite mixture model by considering panel data that are

generated by mixtures of multivariate Student’s t distributions. Assuming a multivariate

normal mixture is not always appropriate. For example, extreme tail observations can easily

occur in the analysis of accounting ratios when the denominator is close to zero, implying

pronounced changes from negative to positive values.
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To use the EM-algorithm for mixtures of Student’s t distributions, we use the densities

fj(yi,t;θj,t) =
Γ((νj +D)/2)

Γ(νj/2) |πνjΩj,t|1/2
(
1 + (yi,t − µj,t)′ (νjΩj,t)

−1 (yi,t − µj,t)
)−(ν+D)/2

. (16)

Both the E-steps and the M-steps of the algorithm are unaffected save for the fact that we

use Student’s t rather than Gaussian densities. The main difference follows for the dynamic

models, where the score steps now take a different form. Using (16), the scores for the

location parameter µj,t and scale matrix Ωj,t are

∇µj,t = Ω−1
j,t

N∑
i=1

τ
(k)
i,j wi,j,t · (yi,t − µj,t) , (17)

∇Ωj,t
= 1

2

N∑
i=1

τ
(k)
i,j Ω−1

j,t [wi,j,t · (yi,t − µj,t)(yi,t − µj,t)′ − Ωj,t] Ω−1
j,t , (18)

wi,j,t = (1 + ν−1
j D)

/(
1 + ν−1

j (yi,t − µj,t)′Ω−1
j,t (yi,t − µj,t)

)
. (19)

The main difference between the scores of the Student’s t and the Gaussian case is the

presence of the weights wi,j,t. These weights provide the model with a robustness feature:

observations yi,t that are outlying given the fat-tailed nature of the Student’s t density receive

a reduced impact on the location and volatility dynamics by means of a lower value for wi,j,t;

compare Creal et al. (2011, 2013) and Harvey (2013). We use the same scale matrices for the

score as in Sections 2.3 and 2.4.1. For the location parameter, which is our main parameter

of interest, the scaling matrix for the Student’s t case is proportional to that for the normal,

such that any differences are included in the estimation of the smoothing parameter A1. We

obtain the scaled scores

sµj,t =

(
N∑
i=1

τ
(k)
i,j wi,j,t · (yi,t − µj,t)

)/(
N∑
i=1

τ
(k)
i,j

)
, (20)

sΩj,t
=

(
N∑
i=1

τ
(k)
i,j

(
wi,j,t · (yi,t − µj,t)(yi,t − µj,t)′ − Ωj,t

))/(
N∑
i=1

τ
(k)
i,j

)
. (21)

The intuition is the same as for the Gaussian case, except for the fact that the scaled score

steps for µj,t and Ωj,t are re-descending to zero and bounded, respectively, if yi,t is extremely
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far from µj,t. Also note that for νj →∞ we see in (19) that wi,j,t → 1, such that we recover

the expressions for the Gaussian mixture model.

2.4.3 Explanatory covariates

The score-driven dynamics for component-specific time-varying parameters can be extended

further to include contemporaneous or lagged economic variables as additional conditioning

variables. For example, a particularly low interest rate environment may push financial

institutions, overall or in part, to take more risk or change their asset composition; see e.g.

Hannoun (2015), Abbassi et al. (2016), and Heider et al. (2017). Using additional yield

curve-related conditioning variables allows us to incorporate and test for such effects. Let

Xt be a vector of observed covariates, and Bj = Bj(Θ) a matrix of unknown coefficients

that need to be estimated. In the case of a Student’s t distributed mixture, the score-driven

updating scheme then changes slightly to

µj,t+1 = µj,t + A1 ·
∑N

i=1 τ
(k)
i,j wi,j,t(yi,t − µj,t)∑N

i=1 τ
(k)
i,j

+Bj ·Xt. (22)

Again, in the case of a Gaussian mixture, wi,j,t = 1. The covariates can also be made firm

and cluster component specific, i.e., Xi,j,t.

2.5 Diagnostics: Stability of cluster allocation over time

The assumption that component membership is time-invariant implies that pooling infor-

mation over t = 1, . . . , T is optimal. This is of substantial help to robustly classify each

unit i. Although our sample covers only 32 quarters (8 years), it is clear that switches in

component membership become more likely as the sample period grows. In such a case, we

have to trade off estimation efficiency against estimation bias.

To check whether component probabilities τi,j are time-varying, we consider the point-
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in-time diagnostic statistic

τ̂ij|t =
π̂jfj

(
yi,t

∣∣∣Yi,t−1;θj,t(Θ̂)
)

∑J
h=1 π̂hfh

(
yi,t

∣∣∣Yi,t−1;θh,t(Θ̂)
) , (23)

which can be viewed as the time t posterior probability that firm i belongs to cluster compo-

nent j, computed using the estimates under the null of time-invariant cluster assignments.

A filtered counterpart using information from time 1 to t can be constructed by replacing

fj(yi,t | Yi,t−1;θj,t(Θ̂)) by
∏t

s=1 fj(yi,s | Yi,s−1;θj,s(Θ̂)). If τ̂i,j|t is close to 1 or 0 for all t

for a specific (i, j), firm i is unlikely to have switched clusters. Otherwise, switches may be

a concern. We discuss time series plots of τi,j|t for diagnostic purposes in our application in

Section 4.

3 Simulation study

3.1 Simulation design

This section investigates the ability of our score-driven dynamic mixture model to simulta-

neously i) correctly classify a data set into distinct components, and ii) recover the dynamic

cluster means over time. In addition, we investigate the performance of several model selec-

tion criteria from the literature in detecting the correct model when the number of clusters is

unknown. In all cases, we pay particular attention to the sensitivity of the EM algorithm to

the (dis)similarity of the clusters, the number of units per cluster, and the impact of model

misspecification.

We simulate from a mixture of dynamic bivariate densities. These densities are composed

of sinusoid mean functions and i.i.d. disturbance terms that are drawn from a bivariate

Gaussian distribution or a bivariate Student’s t distribution with five or three degrees of

freedom. The covariance matrices are chosen to be time-invariant identity matrices.

The sample sizes are chosen to resemble typical sample sizes in studies of banking data.

We thus keep the number of time points small to moderate, considering T ∈ {10, 30}, and
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set the number of cross-sectional units equal to N = 100 or to N = 400. The number of

clusters used to generate the data is fixed at J = 2 throughout. In our first set of simulation

results in Section 3.2, we assume J = 2 is known. In a second set of simulations, we do

not assume to know the number of clusters, but determine it using different model selection

criteria. To save space in the main text, the description of these criteria has been moved to

Web Appendix A, together with the outcomes of these simulations.

In our baseline setting, visualized in Figure 1, we generate data from two clusters located

around means that move in two non-overlapping circles over time. Across our different

simulation designs, the data have different signal-to-noise ratios in the sense that the radius

of the circles is large or small relative to the variance of the error terms. In addition, we also

consider two more challenging settings where the two circles overlap completely: the circles

have the same center, but differ in the orientation of the time-varying mean component

(clockwise vs. counterclockwise). Again, we consider circles with a large and small radius,

respectively, while keeping the variance of the error terms fixed and thus changing the signal-

to-noise ratio in the simulation set-up.

Finally, we investigate the impact of two types of model misspecification. First, we

incorrectly assume a Gaussian mixture in the estimation process when the data are generated

by a mixture of Student’s t densities with five degrees of freedom (ν = 5). Alternatively,

we simulate from a t(3)-mixture, but fix the degrees of freedom parameter to five in the

estimation. In both cases, we check the effect of mis-specifying the tail behavior of the

mixture distribution. In total, we consider 96 different simulation settings.

3.2 Simulation results for classification and tracking

Using the score-driven model set-up and EM estimation methodology from Section 2, we

classify the data points and estimate the component parameters from the simulated data.

The static parameters to be estimated include the distinct entries of the covariance matrices,

and the diagonal elements of the smoothing matrix A1, which, for simplicity, we assume to

be equal across dimensions and components, i.e. A1 = a1ID.

Figure 1 illustrates our simulation setup with two examples. The data generating pro-
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Figure 1: True mean processes (black) together with median filtered means over 100 simula-
tion runs (red) and the filtered means (green triangles). Both panels correspond to simulation
setups under correct specification with circle centers that are 8 units apart (distance=8). The
upper panel corresponds to the simulation setup with radius 4, while the lower panel depicts
the mean circles with radius 1.

cesses are plotted as solid black lines. In each panel, the true process is compared to the

pointwise median of the estimated paths over simulation runs (solid red line), as well as the

filtered mean estimates for each simulation run (green triangles). The actual observations

are dispersed much more widely around the black circles, as for each point on the circle they

are drawn from the bivariate standard normal distribution, thus ranging from approximately

µj,t − 2.5 to µj,t + 2.5 with 99% probability. Our methodology allocates each data point to

its correct component, and in addition tracks the dynamic mean processes accurately.

Table 1 presents mean squared error (MSE) statistics as our main measure of estimation

fit. MSE statistics for time-varying component means are computed as the squared deviation

of the estimated means from their true counterparts, averaged over time and simulation runs.

The top panel of Table 1 contains MSE statistics for eight simulation settings. Each of these

settings considers Nj = 100/2 = 50 units per component. The bottom panel of Table 1

presents the same information for Nj = 400/2 = 200 units per component. In each case,

we also report the proportion of correctly classified data points, averaged across simulation

runs.

Not surprisingly, the performance of our estimation methodology depends on the simula-

tion settings. For a high signal to-noise ratio (i.e., a large circle radius) and a large distance

between the unconditional means, the cluster classification is close to perfect, both under
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Table 1: Simulation outcomes
Mean squared error (MSE) and average percentage of correct classification for each cluster (% C1 and %

C2) across simulation runs. Considered sample sizes are N = 100, 400 and T = 10, 30. Radius (rad.) refers

to the radius of the true mean circles and is a measure of the signal-to-noise ratio. Distance (dist.) is the

distance between circle centers and measures the distinctness of clusters. Correct specification refers to the

case of simulating from a normal mixture and estimating assuming a mixture of normal distributions. In

the case of misspecification 1, data are simulated from a t-mixture with 5 degrees of freedom, but the model

is estimated assuming normal mixtures. In the case of misspecification 2, a t(3)-mixture is used to simulate

the data while in the estimation, a fixed value ν = 5 is assumed.

N = 100
correct specification

T=10 T=30
rad. dist. MSE % C1 % C2 MSE % C1 % C2

4 8 0.34 100 100 0.36 100 100
4 0 0.34 100 100 0.36 100 100
1 8 0.04 100 100 0.04 100 100
1 0 0.04 99.18 99.28 0.04 100 99.99

misspecification 1
T=10 T=30

rad. dist. MSE % C1 % C2 MSE % C1 % C2
4 8 0.34 100 100 0.37 100 100
4 0 0.35 100 100 0.37 100 100
1 8 0.05 100 99.98 0.05 100 100
1 0 0.12 89.31 84.67 0.08 96.62 93.8

misspecification 2
T=10 T=30

rad. dist. MSE % C1 % C2 MSE % C1 % C2
4 8 0.42 100 100 0.46 100 100
4 0 0.42 100 100 0.46 100 100
1 8 0.05 100 100 0.05 100 100
1 0 0.07 94.14 93.78 0.05 99.7 99.62

N = 400
correct specification

T=10 T=30
rad. dist. MSE % C1 % C2 MSE % C1 % C2

4 8 0.32 100 100 0.34 100 100
4 0 0.32 100 100 0.34 100 100
1 8 0.02 100 100 0.03 100 100
1 0 0.04 98.38 98.31 0.03 99.98 99.99

misspecification 1
T=10 T=30

rad. dist. MSE % C1 % C2 MSE % C1 % C2
4 8 0.32 100 100 0.35 100 100
4 0 0.32 100 100 0.35 100 100
1 8 0.03 100 100 0.03 100 100
1 0 0.06 94.16 91.68 0.03 99.71 99.61

misspecification 2
T=10 T=30

rad. dist. MSE % C1 % C2 MSE % C1 % C2
4 8 0.41 100 100 0.44 100 100
4 0 0.41 100 100 0.44 100 100
1 8 0.03 100 100 0.04 100 100
1 0 0.05 95.03 95.18 0.06 97.74 97.78
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correct specification and model misspecification. Interestingly, the distance between circles is

irrelevant for estimation fit and classification ability in the case of large radii (signal-to-noise

ratios).

As the distance between means and the circle radii decrease, the shares of correct clas-

sifications decrease as well. Both estimation fit and share of correct classification decrease

further if we assume a Gaussian mixture although the data are generated from a mixture of

fat-tailed Student’s t distributions. This indicates a sensitivity to outliers when assuming a

Gaussian mixture in the case of fat-tailed data. Incorrectly assuming five degrees of freedom

when the data are generated by a t(3)-mixture, on the other hand, leads to little bias. Con-

sequently, a misspecified t-mixture model allows us to obtain more robust estimation and

classification results than a Gaussian mixture model when the data are fat-tailed. This is

due to the fact that also the t(5) based score-dynamics for µj,t already discount the impact

of outlying observations, although not as strictly as the score-based dynamics of a Student’s

t(3) distribution.

In our empirical study of banking data, the number of clusters, i.e. bank business models,

is unknown a priori. A number of model selection criteria and so-called cluster validation

indices have been proposed in the literature, and comparative studies have not found a

dominant criterion that performs best in all settings; see e.g. Milligan and Cooper (1985)

and de Amorim and Hennig (2015). We therefore run an additional simulation study to see

which model selection criteria are suitable to choose the optimal number of components in

our multivariate panel setting. We refer to Web Appendix A for the results. The Davies-

Bouldin index (DBI; see Davies and Bouldin (1979)), the Calinski-Harabasz index (CHI; see

Calinski and Harabasz (1974)), and the average Silhouette index (SI; see de Amorim and

Hennig (2015)) perform well.
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4 Bank business models

4.1 Data

The sample under study consists of N = 208 European banks, for which we consider quar-

terly bank-level accounting data from SNL Financial between 2008Q1 – 2015Q4. This implies

T = 32. We assume that differences in banks’ business models can be characterized along six

dimensions: size, complexity, activities, geographical reach, funding strategies, and owner-

ship structure. We select a parsimonious set of D = 13 indicators from these six categories.

We consider banks’ total assets, leverage with respect to CET1 capital [size], net loans to

assets ratio, risk mix, assets held for trading, derivatives held for trading [complexity], share

of net interest income, share of net fees & commissions income, share of trading income, ratio

of retail loans to total loans [activities], ratio of domestic loans to total loans [geography],

loans to deposits ratio [funding], and an ownership index [ownership].

We refer to Web Appendix B for a detailed discussion of our data, including data trans-

formations and SNL Financial field keys. Web Appendix B also discusses our treatment of

missing observations and banks’ country location.

4.2 Model selection

This section motivates the model specification employed in our empirical analysis. We first

discuss our choice of the number of clusters. We then determine the parametric distribution,

pooling restrictions, and choice of covariance matrix dynamics.

Table 2 presents likelihood-based and distance-based information criteria, as well as dif-

ferent cluster validation indices for different values of J = 2, . . . , 10. The log-likelihood fit

increases monotonically with the number of clusters. Likelihood-based information criteria

turn out to be sensitive to the specification of the penalty term. They either select the max-

imum number (AICc, BIC) or minimum number (AICk, BaiNg2) of components; see Web

Appendix A for definitions of the different criteria. Distance-based cluster validation indices

such as the CHI, DBI, and SI suggest J = 6. Each of these take a local maxium/minimum at
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Table 2: Information criteria
Likelihood- and distance-based information criteria as well as cluster-validation indices for different values
of J = 2, . . . , 10. The panel refers to a model specification with time-varying component means µj,t, time-
invariant Ωj , and ν estimated as a free parameter. Each statistic is the maximum (respectively minimum)
obtained from 5,000 random starting values for the model parameters. We refer to Web Appendix A for
exact formulas and literature references for all reported selection criteria. The average Silhouette index (SI)
is multiplied by 100. The top three suggested values are printed in bold.

J loglik AICc BIC AICk BaiNg2 CHI DBI SI
2 1134.4 -1828.8 -393.8 2525.4 -0.218 12.71 3.61 11.0
3 9159.9 -17652.0 -15520.5 2973.5 -0.074 9.00 4.03 1.3
4 13700.4 -26497.4 -23677.2 3243.5 -0.038 8.08 3.79 1.4
5 17055.1 -32963.1 -29462.2 3615.3 0.059 7.42 3.84 1.1
6 19812.8 -38226.5 -34053.3 3990.6 0.157 7.90 3.18 1.9
7 21522.2 -41384.0 -36547.6 4085.8 0.040 7.25 3.27 1.1
8 25142.2 -48353.6 -42863.3 4576.8 0.227 7.57 2.86 1.1
9 27341.3 -52471.3 -46337.1 5035.6 0.386 7.43 2.85 1.8

10 29883.8 -57265.3 -50497.7 5281.3 0.369 6.31 3.23 0.5

this value. In practice, experts consider between five and up to more than ten different bank

business models; see, for example, Ayadi et al. (2014) and Bankscope (2014, p. 299). With

these considerations in mind, to be conservative and in line with Table 2 and the simulation

results as reported in Web Appendix A, we choose J = 6 components for our subsequent

empirical analysis.

Table 3: Model specification
Log-likelihoods and differences in log-likelihoods for different model specifications. The estimates are con-

ditional on the same (optimal) allocation of banks to J = 6 components; cluster validation indices are not

presented for this reason.

Density ν value A1 Ωj ; Ωj,t loglik ∆loglik
N - ∞ scalar static 17,131.4
t fixed ≡ 5 scalar static 20,485.3 3,353.9
t fixed ≡ 5 vector static 20,499.6 14.3
t est 6.6 scalar static 20,617.1 117.5
t est 6.6 vector static 20,631.2 14.1
N - ∞ scalar dynamic 21,305.9 674.7
t fixed ≡ 10 scalar dynamic 28,606.0 7,300.1
t est 5.7 scalar dynamic 29,190.3 584.3

Table 3 motivates our additional empirical choices. We estimate a range of models with
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varying degrees of flexibility: normal versus Student’s t, static versus dynamic covariance

matrices, and a scalar versus a diagonal A1. We observe two large likelihood improvements.

First, allowing for fat-tailed rather than Gaussian mixtures increases the likelihood by more

than 3,400 points for the static covariance case, and more than 7,800 points for dynamic

covariance matrices. Second, allowing covariance matrices to be dynamic increases the like-

lihood more than 4,100 points for Gaussian mixtures, and more than 9,500 points for the

Student’s t case. Allowing A1 to be diagonal only results in a minor likelihood increase,

and the diagonal elements are all quite similar. We therefore adopt a Student’s t model

with scalar A1, estimated degrees of freedom ν, and dynamic covariance matrices Ωj,t as

our main empirical specification. The autoregressive matrices are given by A1 = a1 · ID, and

A2 = a2·ID. Unknown parameters to be estimated in the M-step are therefore Θ = (a1, a2, ν)′.

Using this parameter specification, we combine model parsimony with the ability to study a

high-dimensional array of data.

Web Appendix C presents the estimated diagnostic statistics as defined in Section 2.5.

Specifically, we report all time t posterior probabilities that unit i belongs to cluster compo-

nent j for all 208 banks in our sample. In addition, we present histograms of the maximum

average point-in-time and filtered component probabilities. The plots indicate that there is

one most suitable business model for almost all banks in our data.

Web Appendix D compares our cluster allocation outcomes with a 2016 supervisory

ECB/SSM bank survey (‘thematic review’) that asked a subset of banks in our sample

which other banks they consider to follow a similar business model. We find that our

classification outcomes for these banks approximately, but not perfectly, correspond to bank

managements’ own views.

Web Appendix E studies to which extent the clustering outcomes change by leaving out

variables d = 1, . . . , D one-at-a-time and then re-estimating the model. All variables turn

out to be important in the sense that they have a substantial influence on the clustering

outcome. In addition, the clustering outcomes are not dominated by a single variable, such

as for instance total assets.
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Figure 2: Time-varying component medians

Filtered component medians for twelve indicator variables; see Table B.1. The component medians coincide
with the component means unless the variable is transformed; see the last column of Table B.1 in Web
Appendix B. The ownership variable is omitted since it is time-invariant. The component mean estimates
are based on a t-mixture model with J = 6 components and time-varying component means µj,t and
covariance matrices Ωj,t. We distinguish large universal banks, including G-SIBs (black line), international
diversified lenders (red line), fee-focused lenders (blue line), domestic diversified lenders (green dashed line),
domestic retail lenders (purple dashed line), and small international banks (light-green dashed line).
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4.3 Discussion of bank business models

This section studies the different business models implied by the J = 6 different component

densities. Specifically, we assign labels to the identified components to guide intuition and

for ease of reference. These labels are chosen in line with Figure 2, Figure F.1 in Web

Appendix D, and the identities of the firms in each component. In addition, our labeling is

approximately in line with the examples listed in SSM (2016, p.10).

Figure 2 plots the component median estimates for each indicator variable and business

model component (except ownership, which is time-invariant). Web Appendix F presents

additional figures, such as box plots of the time series averages of each variable for each

business model group. In addition, Web Appendix F presents the filtered component-specific

time-varying standard deviations
√

Ωj,t(d, d) for variables d = 1, . . . , D − 1. The standard

deviations tend to decrease over time starting from the high dispersion observed during the

financial crisis (2008–2009). The standard deviation estimates also differ across business

models.

We distinguish

(A) Large universal banks, including G-SIBs (14.9% of firms; comprising e.g. Barclays

plc, Credit Agricole SA, Deutsche Bank AG.)

(B) International diversified lenders (11.1% of firms; e.g. ABN Amro NV, BBVA SA,

Confederation Nationale du Credit Mutuel SA.)

(C) Fee-focused bank (15.9% of firms; e.g. Monte Dei Paschi di Sienna, Banco Populare,

Bankinter SA.)

(D) Domestic diversified lenders (26.9 % of firms; e.g. Aareal Bank AG, Abanca Cor-

poracion Bancaria SA, Alpha Bank SA.)

(E) Domestic retail lenders (17.8% of firms; e.g. Alandsbanken Abp, Berner Kantonal-

bank, Newcastle Building Society.)

(F) Small international banks (13.5% of firms; e.g. Alpha Bank Skopje, AS Citadele

Banka, AS SEB Pank.)
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Large universal banks, including G-SIBs (black line) stand out as the largest insti-

tutions, with up to e2 trn in total assets per firm for globally significantly important banks.

Approximately 60% of operating revenue tends to come from interest-bearing assets such as

loans and securities holdings. This leaves net fees & commissions as well as trading income

as significant other sources. Large universal banks are the most leveraged at any time be-

tween 2008Q1–2015Q4, even though leverage, i.e., total assets to CET1 capital, decrease by

more than a third from pre-crisis levels, from approximately 45 to below 30; see Figure 2.

Large universal banks hold significant trading and derivative books, both in absolute terms

and relative to total assets. Naturally, such large banks engage in significant cross-border

activities, including lending (between 40-50% of loans are cross-border loans).

International diversified lenders (red line) are second in terms of firm size, with total

assets ranging between approximately e100 – 500 bn per firm. As the label suggests, such

banks lend significantly across borders and to both retail and corporate clients. The share of

non-domestic loans to total loans is approximately 30%, and the share of retail loans ranges

between approximately 20–60%. International diversified lenders also serve their corporate

customers by trading securities and derivatives on their behalf, resulting in significant trading

and derivatives books. In addition, such banks tend to be non-deposit funded, as indicated

by a high loans-to-deposits ratio between 100 and 200%.

Fee-focused banks (blue line) achieve most of their income from net fees and commis-

sions (approximately 30%). This group contains banks that focus on fee-based commercial

banking activities, such as transaction banking services, trade finance, credit lines, advisory

services, and guarantees. In addition, however, this component appears to contain ‘weak’

banks which do not generate much income in their traditional lines of business. The com-

ponent mean for net interest income is low, raising the share of net fees and commissions.

Fee-focused banks tend to exhibit a relatively high loans-to-assets ratio of approximately

70%, and also tend to focus on domestic loans (approximately 80%). Median total assets

are typically below 100 bn per firm.

Domestic diversified lenders (green dashed line) are relatively numerous, comprising

approximately 27% of firms, and are of moderate size. Total assets are typically below e50
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bn per firm. Domestic diversified lenders tend to be well capitalized, as implied by relatively

low leverage ratios (of typically less than 20). Trading and derivatives books are small.

Lending is split approximately evenly between corporate and retail clients. Non-domestic

loans are typically below 20%.

Finally, domestic retail lenders and small international banks are the smallest

firms, with typically less than e25 bn in total assets. Domestic retail lenders and small

international banks have much in common. Both types of banks display low leverage, sug-

gesting they are well capitalized. The relatively largest part of their risk is credit risk (risk

mix). Neither group holds significant amounts of securities or derivatives in trading portfo-

lios. Approximately two-thirds of their income comes from interest-bearing assets, making

it the dominant source of income.

Domestic retail lenders differ from small international banks in two ways: asset com-

position and geographical focus. Domestic retail lenders focus almost exclusively on loans

(as indicated by a high loans-to-assets ratio) and domestic retail clients. By contrast, small

international banks own substantial non-loan assets, and also serve non-domestic and non-

retail (corporate) clients. The loans-to-deposits ratio is low for small international banks, at

approximately one.

Figure 2 can also be used to discuss bank heterogeneity during the great financial crisis

between 2008–2010 and the euro area sovereign debt crisis between 2010–2012, as well as

overall banking sector trends during our sample. We refer the interested reader to Web

Appendix G.

5 Bank business models and the yield curve

This section studies the extent to which banks adapt their business models to changes in the

yield curve. We first review European interest rate developments before discussing parameter

estimates.
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Figure 3: Yield curve and factor plots
All yield curve and factor plots refer to AAA-rated euro area government bonds, and are based on a Svensson
(1995) four-factor model. Yield factor estimates are taken from the ECB. The left panel plots fitted Svensson
yield curves on four dates – mid-2008Q1, mid-2010Q1, mid-2015Q1, and mid-2015Q4, for maturities between
one and 20 years, and based on all yield curve factors. The right panel plots the level factor estimate, along
with the model-implied short rate (given by the sum of the level and slope factor).

5.1 Low interest rates

Figure 3 plots fitted zero-coupon yield curves for maturities between one and twenty years at

different times during our sample (left panel). European government bond yields experienced

a pronounced downward shift during our sample, ultimately reaching ultra-low and in part

negative values. The yield curve factors underlying the yield curve estimates are based on a

Svensson (1995) four-factor model and are extracted daily from market prices of AAA-rated

sovereign bonds issued by euro area governments. The yield curve factor estimates can be

obtained from the ECB’s website.

Figure 3 also plots the level factor, along with the implied short rate (right panel). The

slope factor fluctuates around a value of approximately−2 in our sample, and is not reported.

Long-term yields increase up to approximately 4% between 2009–2011 following an initial

sharp drop during the global financial crisis. Between 2013–2015, nominal yields decline to

historically low levels. In 2015, European 10-year rates are often below 1%. Short-term rates

become negative in 2015 following a cut of the ECB’s deposit facility rate to negative values.

Low nominal interest rates do not necessarily only reflect unconventional monetary policies,

including the ECB’s Public Sector Purchase Programme (PSPP; or “Quantitative Easing”).

Decreasing inflation rates, inflation risk premia, demographic factors, and an imbalance

between global saving and investment likely also play a role; see e.g. Draghi (2016).
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Table 4: Factor sensitivity estimates
Fixed effects panel regression estimates for annual changes in bank-level accounting data ∆4yit(d), d =

1, . . . , 12, on a constant and contemporaneous and one-year lagged annual changes in yield curve factors

level and slope. Specifically, ∆4yit(d) = b1∆4levelt + b2∆4slopet + b3∆4levelt−4 + b4∆4slopet−4 + constant +

fixed effectsi + εit. Dependent variables are as listed in Table B.1 of the Web Appendix. Standard errors are

Driscoll-Kraay standard errors with three lags; stars denote significance at a 10%, 5%, and 1% level.

∆4ln(TAt) ∆4ln(Levt) ∆4(TL/TA)t ∆4ln(RMt) ∆4(AHFT/TA)t ∆4(DHFT/TA)t
∆4 levelt -0.0508*** -0.0260** 1.824*** 0.00586 -0.00688** -0.0111***

(0.0118) (0.0116) (0.292) (0.0125) (0.00327) (0.00354)
∆4 slopet -0.0514*** -0.0267** 1.470*** -0.00336 -0.00489 -0.0105***

(0.0123) (0.0112) (0.303) (0.0141) (0.00304) (0.00339)
∆4 levelt−4 -0.0169*** 0.00685 0.213** -0.00465 0.000441 0.00237

(0.00422) (0.00490) (0.0984) (0.00527) (0.00133) (0.00159)
∆4 slopet−4 -0.0346*** -0.00777 0.118 -0.00742 -0.000742 -0.000591

(0.00540) (0.00567) (0.143) (0.00645) (0.00153) (0.00179)
constant 0.0104* -0.0425*** 0.236 0.0201*** -0.00238* -0.00107

(0.00578) (0.00344) (0.138) (0.00541) (0.00127) (0.00140)
Observations 3,064 2,640 2,902 2,179 2,285 2,286
Number of groups 208 206 208 203 208 208
Bank FE YES YES YES YES YES YES

Within R2 0.0508 0.00758 0.0251 0.00218 0.0207 0.0656

∆4(NII/OR)t ∆4(NFC/OI)t ∆4(TI/OI)t ∆4(RL/TL)t ∆4(DL/TL)t ∆4(L/D)t
∆4 levelt 1.931 0.371 -0.0509 0.00562*** 1.225*** -0.230

(2.040) (0.664) (1.871) (0.00194) (0.291) (0.498)
∆4 slopet 2.712 1.606** 1.041 0.00615*** 1.182*** -1.047

(1.868) (0.740) (1.610) (0.00174) (0.395) (0.700)
∆4 levelt−4 -1.160** -1.293*** 0.686 -0.00210*** -0.200 0.277

(0.536) (0.414) (0.433) (0.000714) (0.196) (0.279)
∆4 slopet−4 -2.191*** -1.335** 1.243** 0.000269 -0.111 0.0282

(0.631) (0.572) (0.509) (0.00102) (0.189) (0.349)
constant 0.118 -0.0291 -0.0375 0.00728*** 0.362 -1.973***

(0.839) (0.313) (0.711) (0.00117) (0.212) (0.362)
Observations 2,836 2,827 2,737 1,895 1,498 2,417
Number of groups 208 208 208 181 172 207
Bank FE YES YES YES YES YES YES

Within R2 0.00287 0.00391 0.00745 0.00578 0.00633 0.00426

5.2 Fixed effects panel regression results

Table 4 presents fixed effects panel regression estimates of bank-level accounting variables

∆4yi,t(d), d = 1, . . . , 12, on a constant and contemporaneous as well as one-year lagged

changes in two yield curve factors, level and slope. We consider four-quarter differences

since most banks report at an annual frequency. Table 4 pools bank data across business

model components. Table 5 reports the regression coefficients for the one-year changes in

the yield curve level, pooled as well as disaggregated across business model clusters. Web

Appendix H reports all estimates for each variable and business model group.

We discuss five findings. First, as long-term interest rates decrease, banks on average

grow larger in terms of total assets, by approximately 5% in response to a 100 bps drop in

the level factor. The coefficient estimates for short term rates and lagged changes in yields

are negative as well. This finding is in line with banks’ incentive to extend the balance
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Table 5: Sensitivities to changes in the term structure level (∆4lt)
Yield level factor sensitivities for bank-level accounting data, controlling for changes in the slope factor and

lagged changes in the yield curve. Factor sensitivity parameters are reported as pooled across all business

models (column 2: All) as well as disaggregated across business model components A – F (columns 3 to 8).

Estimates are obtained by fixed effects panel regression. Standard errors are Driscoll-Kraay standard errors

with three lags.

Dependent variable All A B C D E F
∆4 ln(TA)t -0.0508*** -0.126*** -0.0612*** -0.0501*** -0.0286*** -0.0375 -0.0301

(0.0118) (0.0216) (0.00568) (0.0150) (0.00809) (0.0432) (0.0253)
∆4 ln(Lev)t -0.0260** -0.0678* -0.0358 0.0107 0.00223 -0.0745*** -0.0474

(0.0116) (0.0354) (0.0235) (0.0177) (0.0204) (0.0255) (0.0341)
∆4 (TL/TA)t 1.824*** 3.391*** 2.236*** 2.495*** 1.204*** 1.446** 0.0682

(0.292) (0.666) (0.394) (0.234) (0.258) (0.611) (0.619)
∆4 ln(RM)t 0.00586 -0.0807 -0.101*** 0.0567 0.0257* 0.0206 0.0850*

(0.0125) (0.0702) (0.0254) (0.0364) (0.0143) (0.0304) (0.0462)
∆4 (AHFT/TA)t -0.00688** -0.0290** -0.00814*** -0.00926*** 0.00168 0.000203 0.00138***

(0.00327) (0.0115) (0.00203) (0.00310) (0.00168) (0.000869) (0.000416)
∆4 (DHFT/TA)t -0.0111*** -0.0474*** -0.0165*** -0.0107*** -0.00197 0.00135** 0.000454

(0.00354) (0.0135) (0.00412) (0.00164) (0.00138) (0.000554) (0.000306)
∆4 (NII/OR)t 1.931 -6.797 4.614 5.992** 2.985 0.184 -2.010

(2.040) (4.742) (5.120) (2.195) (1.753) (4.745) (3.212)
∆4 (NFC/OI)t 0.371 1.447 1.703 0.234 -0.986 0.184 2.591

(0.664) (0.954) (1.767) (0.728) (0.987) (1.631) (2.216)
∆4 (TI/OI)t -0.0509 12.40*** 0.623 -1.792 -1.755 -4.171 1.448

(1.871) (4.188) (2.611) (2.585) (1.725) (3.010) (1.518)
∆4 (RL/TL)t 0.00562*** 0.00129 0.00252 0.0108*** 0.00141 0.0113*** -0.00195

(0.00194) (0.00316) (0.00480) (0.00351) (0.00373) (0.00398) (0.00828)
∆4 (DL/TL)t 1.225*** 1.158* 3.736*** 1.418*** 0.384 0.0161 2.581*

(0.291) (0.563) (1.009) (0.374) (0.447) (0.205) (1.466)
∆4 (L/D)t -0.230 -1.754 -3.275* 2.924 -1.534 0.347 0.620

(0.498) (1.837) (1.705) (2.080) (1.510) (1.642) (1.462)

sheet to offset squeezed net interest margins for new loans and investments. In addition,

and trivially, some bank assets are worth more at lower rates.

Second, bank leverage is predicted to increase as yields decline. This correlation needs to

be interpreted with caution. Leverage declined most strongly between 2010 and 2012, when

euro area yields were increasing owing to the sovereign debt crisis. In addition, leverage is

influenced by changes in financial regulation which we do not control for.

Third, the composition of bank assets is sensitive to changes in the yield curve factors.

The loans-to-assets ratio decreases by approximately 2% on average across business models

in response to a 100 bps drop in long-term rates. By contrast, the sizes of banks’ trading

and derivative books increase to some extent. This change in balance sheet composition is

driven mostly by the larger banks (components A to C; Table 5), and could reflect a decreased

demand for new loans from the private sector in an environment of strongly declining rates;

see Abbassi et al. (2016). In this environment, large banks may invest in tradable securities

such as government bonds instead of expanding their respective loan books; see Acharya and
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Steffen (2015).

Fourth, we observe little variation in the shares of income sources in response to falling

yields. In particular, the share of net interest income is not significantly (at 5%) associated

with contemporaneous changes in yields. Two opposing effects could be at work. On the

one hand, banks funding cost also decrease, and may even do so at a faster rate than long-

duration loan rates. In addition, banks’ long-term loans and bond holdings are worth more

at lower rates, leading to mark-to-market gains. On the other hand, low long term interest

rates squeeze net interest margins for newly acquired loans and bonds. The former effects

could approximately balance the latter in our sample.

Finally, some banks appear to decrease their deposits-to-loans ratio in response to falling

short-term rates. We refer to Web Appendix H, Table H.4, for the respective coefficient

estimates. As the slope factor declines by 100 bps, banks in components A, B, and D

decrease their deposits-to-loans ratio by approximately 2-5%.

Changes in term structure factors can also be added to the econometric specification as

discussed in Section 2.4.3. Given the limited number of T = 32 time series observations,

however, we need to pool the coefficients Bj across mixture components Bj ≡ B to reduce the

number of parameters. Web Appendix I discusses the parameter estimates. The increased

log-likelihood values suggest a slightly better fit than the baseline specification. Coefficients

in B are, however, rarely statistically significant according to their t-values.

We conclude that bank business model characteristics appear to adjust to changes in

the yield curve. Given their direction for falling rates — increased size, increased leverage,

increased complexity through larger trading and derivatives books, and possibly less stable

funding sources — the effects are potentially problematic and need to be assessed from a

financial stability perspective.

6 Conclusion

We proposed a novel score-driven finite mixture model for the study of banking data, accom-

modating time-varying component means and covariance matrices, normal and Student’s t
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distributed mixtures, and term structure factors as economic determinants of time-varying

parameters. In an empirical study of European banks, we classified more than 200 financial

institutions into six distinct business model components. Our results suggest that the global

financial crisis and the euro area sovereign debt crisis had a substantial yet different impact

on banks with different business models. In addition, banks’ business models adapt over

time to changes in long-term interest rates.

Acknowledgements

Lucas and Schaumburg thank the European Union Seventh Framework Programme (FP7-

SSH/2007–2013, grant agreement 320270 - SYRTO) for financial support. Schaumburg also

thanks the Dutch Science Foundation (NWO, grant VENI451-15-022) for financial support.

Parts of this paper were written while Schwaab was on secondment to the ECB’s Single

Supervisory Mechanism (SSM). We are particularly grateful to Klaus Düllmann, Heinrich
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Web Appendix A: Details on model selection when the

number of components is unknown

In our empirical study of banking data, the number of clusters, i.e. bank business models, is

unknown a priori. A number of model selection criteria and so-called cluster validation indices

have been proposed in the literature, and comparative studies have not found a dominant criterion

that performs best in all settings; see e.g. Milligan and Cooper (1985) and de Amorim and Hennig

(2015). We therefore run an additional simulation study to see which model selection criteria are

suitable to choose the optimal number of components in our multivariate panel setting.

All criteria and definitions are listed in Web Appendix A.1. The simulation outcomes are

reported in Web Appendix A.2. Overall, we find that the standard likelihood-based information

criteria such as AIC and BIC tend to systematically overestimate the number of clusters in a

multivariate panel setting. Distance-based criteria corresponding to the within-cluster sum of

squared errors perform better. The Davies-Bouldin index (DBI; see Davies and Bouldin (1979))

and the Calinski-Harabasz index (CHI; see Calinski and Harabasz (1974)) do well. In an empirical

setting, therefore, we recommend looking at a variety of model selection criteria for a full picture,

but to pay particular attention to DBI and CHI whenever the selection criteria disagree.

A.1 Information criteria and selection indices

Standard likelihood-based information criteria As our framework is likelihood-based,

we can apply standard information criteria such as AICc and BIC for model selection. AICc is the

likelihood-based Akaike criterion, corrected by a finite sample adjustment; see Hurvich and Tsai

(1989). However, these criteria might not give a large enough penalty when too many clusters are

assumed. Therefore, we also consider a range of other criteria from the literature, that have been

applied to select the number of components in different settings.

Distance-based information criteria The average within-cluster sum of squared errors

simply measures the average deviation of an observation from its respective cluster mean. It does

not take into account how well clusters are separated from each other. Therefore, we expect this
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criterion to overfit in some cases.

wSSE(J) =
1

T

T∑
t=1

J∑
j=1

∑
i∈Cj

‖yi,t − µj,t‖2 (A.1)

where ‖x‖ denotes the Euclidean norm of vector x.

The Akaike information criterion has been adapted to select the number of clusters when using

the k-means algorithm (see Peel and McLachlan (2000) and Aggarwal and Reddy (2014)). It adds

a penalty function to the within-cluster sum of squared errors:

AICk(J) = wSSE(J) + 2JD

with wSSE(J) as defined in (A.1). Bai and Ng (2002) provide criteria to optimally choose the

number of factors in factor models for large panels. Their setting is similar to ours, so we include

the criterion they suggest in their study:

IC2(J) =
1

ND
wSSE(J) +

J(N + T )

NT
ln(c2NT )

with wSSE(J) from (A.1) and sequence cNT = min{
√
N,
√
T}.

Calinski-Harabasz Index The Calinski-Harabasz Index (CHI), which was introduced by

Calinski and Harabasz (1974), has been successful in various comparative simulation studies, see,

e.g., Milligan and Cooper (1985). We define a weighted version of the within-cluster sum of squared

errors as

wSSEM (J) =
1

T

T∑
t=1

J∑
j=1

∑
i∈Cj

d(yi,t, µj,t)

with d(x, y) denoting the Mahalanobis distance between two vectors x and y, i.e. d(yi,t, µj,t) =

(yi,t − µj,t)′Ω−1(yi,t − µj,t) where Ω is the unconditional covariance matrix of the data. Similarly,

we define the weighted between-cluster sum of squared errors as

bSSEM (J) =
1

T

T∑
t=1

J∑
j=1

Njd(yi,t, ȳt)
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with ȳt = 1
N

∑N
i=1 yi,t and Nj denoting the number of units contained in cluster j. Then, the CHI

corresponding to J clusters is

CHI(J) =
N − J
J − 1

· bSSEM (J)

wSSEM (J)
.

J is chosen such that CHI(J) is as large as possible.

Davies-Bouldin index The Davies-Bouldin index (DBI, see Davies and Bouldin (1979)) also

utilizes the Mahalanobis distance. It relies on a similarity measure for each pair of clusters l and

m, which is often defined as

Rl,m =
sl + sm
dl,m

where sj = 1
T

∑T
t=1

1
Nj
d(yi,t, µj,t), measures the distance of a typical observation in cluster j to its

mean, and dl,m = 1
T

∑T
t=1 d(µl,t, µm,t) measures the distance between the centroids of clusters l and

m. J is then chosen such that the maximum ratio of (weighted) within- and between cluster sums

of squares is as small as possible:

DBI(J) =
1

J

J∑
j=1

Rj

with

Rj = max{Rjk}, j 6= k.

Average silhouette index The silhouette index measures how well each observation fits into

its respective cluster by comparing its within-cluster cohesion with its dissimilarity to the observa-

tions in the closest neighboring cluster. The silhouette value lies between -1 and 1, and the larger,

the better is the fit. It was first introduced in Rousseeuw (1987) and its average over all obser-

vations has been shown to work well as a tool to determine the number of clusters in simulation

studies, see, for instance, de Amorim and Hennig (2015)

SI =
1

N

N∑
i=1

b(Yi)− a(Yi)

max {a(Yi), b(Yi)}

where a(Yi) is the average distance over time of Yi ∈ Sj to all other Ym ∈ Sj and b(Yi) is the

average distance to all Ym ∈ Sl, where Sl is the closest cluster to Sj .
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A.2 Simulation tables for an unknown number of clusters

We rely on the simulation settings as described in Section 3.1. This means we continue to simulate

from bivariate mixtures consisting of two components, distinguishing between high and low signal-

to-noise ratios, and overlapping and non-overlapping mean trajectories. As before, we consider the

impact of two types of mis-specification. By contrast, however, we do not assume that the number

of clusters is equal to the true number (two) when estimating the model, but also estimate model

parameters assuming one and three mixture components, respectively.

Tables A.1 and A.2 list the number of times each information criterion chooses 1, 2, or 3 as the

number of clusters. Overall, we find that the standard likelihood-based information criteria AICc

and BIC tend to systematically overestimate the number of clusters. As a result, these criteria do

not work well. Distance-based criteria corresponding to the within-cluster sum of squared errors

perform better, but almost all of them break down in one or more of the considered settings. The

Davies-Bouldin index (DBI; see Davies and Bouldin (1979)) chooses the correct number of clusters

in all cases reported here. Similarly, the Calinski-Harabasz index (CHI; see Calinski and Harabasz

(1974)) often gives good indications as well. In our empirical application, we therefore report a

variety of model selection criteria to get a full picture, but pay particular attention to these two

validation indices whenever the criteria disagree.
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Table A.1: Number of clusters
Chosen number of clusters by ten information criteria over 100 simulation runs. Correct specification refers to

the case of simulating from a normal mixture and estimating assuming a mixture of normal distributions. In

the case of mis-specification 1, data are simulated from a t-mixture with 5 degrees of freedom, but the model

is estimated assuming a Gaussian mixture distribution. In the case of mis-specification 2, a t(3)-mixture is

used to simulate the data, and a fixed value ν = 5 is assumed in the estimation.

radius=4, distance=8
correct spec. misspec. 1 misspec. 2

no. clusters 1 2 3 1 2 3 1 2 3
AICc 0 65 35 0 66 34 0 54 46
BIC 0 70 30 0 71 29 0 57 43
SSE 0 69 31 0 75 25 0 56 44
AICk 0 100 0 0 100 0 0 94 6
BNG1 0 100 0 0 100 0 0 85 15
BNG2 0 100 0 0 100 0 0 86 14
BNG3 0 100 0 0 99 1 0 84 16
CHI 0 100 0 0 100 0 0 100 0
SI 0 85 15 0 89 11 0 75 25
DBI 0 100 0 0 100 0 0 100 0

radius=4, distance=0
correct spec. misspec. 1 misspec. 2

no. clusters 1 2 3 1 2 3 1 2 3
AICc 0 53 47 0 55 45 0 54 46
BIC 0 55 45 0 58 42 0 58 42
SSE 0 70 30 0 71 29 0 56 44
AICk 0 100 0 0 100 0 0 98 2
BNG1 0 100 0 0 100 0 0 90 10
BNG2 0 100 0 0 100 0 0 91 9
BNG3 0 100 0 0 100 0 0 86 14
CHK 0 100 0 0 100 0 0 100 0
SI 0 96 4 0 99 1 0 79 21
DBI 0 100 0 0 100 0 0 100 0
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Table A.2: Number of clusters, ctd.
Chosen number of clusters by ten information criteria over 100 simulation runs. Correct specification refers

to the case of simulating from a normal mixture and estimating assuming a mixture of normal distributions.

In the case of mis-specification 1, data are simulated from a t-mixture with 5 degrees of freedom, but the

model is estimated assuming normal mixtures. In the case of mis-specification 2, a t(3)-mixture is used to

simulate the data while in the estimation, a fixed value ν = 5 is assumed.

radius=1, distance=8
correct spec. misspec. 1 misspec. 2

no. clusters 1 2 3 1 2 3 1 2 3
AICc 0 55 45 0 64 36 0 60 40
BIC 0 63 37 0 67 33 0 60 40
SSE 0 68 32 0 68 32 0 55 45
AICk 0 100 0 0 100 0 0 96 4
BNG1 0 100 0 0 100 0 0 80 20
BNG2 0 100 0 0 100 0 0 81 19
BNG3 0 100 0 0 99 1 0 78 22
CHK 0 100 0 0 100 0 0 100 0
SI 0 99 1 0 98 2 0 93 7
DBI 0 100 0 0 100 0 0 100 0

radius=1, distance=0
correct spec. misspec. 1 misspec. 2

no. clusters 1 2 3 1 2 3 1 2 3
AICc 0 53 47 1 55 44 0 59 41
BIC 0 55 45 2 56 42 0 64 36
SSE 0 64 36 0 67 33 14 46 40
AICk 100 0 0 100 0 0 94 6 0
BNG1 1 99 0 61 39 0 67 28 5
BNG2 4 96 0 66 34 0 70 25 5
BNG3 0 100 0 45 55 0 58 35 7
CHI 0 100 0 0 98 2 0 100 0
SI 0 100 0 0 100 0 0 99 1
DBI 0 100 0 0 100 0 0 100 0

ECB Working Paper 2084, June 2017 44



Web Appendix B: Data details

Our sample under study consists of N = 208 European banks, for which we consider quarterly

bank-level accounting data from SNL Financial between 2008Q1 – 2015Q4. Banks that underwent

distressed mergers, were acquired, or ceased to operate for other reasons during that time, are

excluded from the analysis. We assume that differences in the remaining banks’ business models

can be characterized along six dimensions: size, complexity, activities, geographical reach, funding

strategies, and ownership structure. We select a parsimonious set of D = 13 indicators from these

six categories. Table B.1 lists the respective indicators.

We augment the proprietary data from SNL Financial with confidential supervisory data from

the European Central Bank. While the publicly-available data is generally of good quality, it

occasionally has insufficient coverage for some bank-level variables given the purpose of this study.

Specifically, we incorporate information from bank-level Finrep reports for euro area significant

institutions when the respective information is missing from SNL Financial. This is necessary for

the bank-level breakdown between retail loans and commercial loans, and the share of domestic

loans to total loans.

Our augmented multivariate panel data is unbalanced in the time dimension. Missing values

occur routinely because some banks are reporting at a quarterly frequency, while others report at an

annual or semi-annual frequency. We remove such missing values by substituting the most recently

available observation for that variable (backfilling). If variables are missing in the beginning of the

sample, we use the most adjacent future value. In the cross-section, we require at least one entry

for each variable and bank.

We consider banks at their highest level of consolidation. In addition, however, we also include

large subsidiaries of bank holding groups in our analysis provided that a complete set of data is

available in the cross-section. Most banks are located in the euro area (54%) and the European

Union (E.U., 73%). European non-E.U. banks are located in Norway (12%), Switzerland (4%), and

other countries (11%).

Table B.1 also reports the data transformation used in the applied modeling. For example, some

ratios lie strictly within the unit interval. We transform such ratios into unbounded continuous

variables by mapping them through an inverse Probit transform. We take natural logarithms of

large numbers, such as total assets, CET1 capital, derivatives held for trading, etc. Finally, the
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Table B.1: Indicator variables
Bank-level panel data variables for the empirical analysis. We consider J=13 indicator variables covering six

different categories. The third column explains which transformation is applied to each indicator before the

statistical analysis. Φ−1 (·) denotes the inverse Probit transform.

Category Variable Transformation
Size 1. Total assets ln (Total Assets)

2. Leverage w.r.t. CET1 capital ln
(

Total Assets
CET1 capital

)
Complexity 3. Net loans to assets Φ−1

(
Loans
Assets

)
4. Risk mix ln

(
Market Risk+Operational Risk

Credit Risk

)
5. Assets held for trading Assets in trading portfolios

Total Assets

6. Derivatives held for trading Derivatives held for trading
Total Assets

Activities 7. Share of net interest income Net interest income
Operating revenue

8. Share of net fees & commission income Net fees and commissions
Operating income

9. Share of trading income Trading income
Operating income

10. Retail loans Retail loans
Retail and corporate loans

Geography 11. Domestic loans ratio Φ−1
(
Domestic loans
Total loans

)
Funding 12. Loan-to-deposits ratio Total loans

Total deposits

Ownership 13. Ownership index -

Note: Total Assets are all assets owned by the company (SNL key field 131929). CET1 capital is Tier 1

regulatory capital as defined by the latest supervisory guidelines (220292). Net loans to assets are loans

and finance leases, net of loan-loss reserves, as a percentage of all assets owned by the bank (226933).

Risk mix is a function of Market Risk, Operational Risk, and Credit Risk (248881, 248882, and 248880,

respectively), which are as reported by the company. Trading portfolio assets are assets acquired principally

for the purpose of selling in the near term (224997). Derivatives held for trading are derivatives with

positive replacement values not identified as hedging or embedded derivatives (224997). P&L variables are

expressed as percentages of operating revenue (248959) or operating income (248961, 249289). Retail loans

are expressed as a percent of retail and corporate loans (226957). Domestic loans are in percent of total

loans by geography (226960). The loans-to-deposits ratio are loans held for investment, before reserves, as

a percent of total deposits, the latter comprising both retail and commercial deposits (248919). Ownership

combines information on ownership structure (131266) with information on whether a bank is listed at a

stock exchange (255389). Ownership structure distinguishes stock corporations, mutual banks, co-op banks,

and government ownership. Stock corporations can be listed or non-listed.
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‘ownership’ variable combines information on ownership and organizational structure with infor-

mation on whether a bank is listed at a stock exchange. It distinguishes listed stock corporations,

non-listed stock corporations, other limited liability companies, mutual/cooperative banks, and

government-owned/state banks. We standardize the resulting categorical variable to zero mean

and unit cross-sectional variance, and add standard-normally distributed error terms to make the

variable ‘ownership index’ continuous. Doing so allows us to also consider information on organiza-

tional structure within our framework of normal and Student’s t-distributed mixtures. We checked

that omission of the ownership variable only leads to small differences in cluster allocation among

small banks. The choice of number of clusters is robust to the inclusion of the ownership variable.
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Web Appendix C: Diagnostic statistics

C.1 Point-in-time probability plots

Figures C.1 – C.3 plot the point-in-time component membership probabilities τij|t as given in (23).

Most firms are fairly unequivocally allocated to one component. Persistent switches of component

membership appear to be rare. In a few cases, however, component membership may have changed.

If so, the new cluster is almost always a ‘neighboring’ cluster for which the component means are

relatively similar. Such firms may be ‘in-between’-cases, and harder to classify.
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Figure C.1: Point-in-time component probabilities
Point-in-time posterior probabilities τij|t for firms 1-72.
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Figure C.2: Point-in-time component probabilities
Point-in-time component membership probabilities τij|t for firms 73-144.
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Figure C.3: Point-in-time component probabilities
Point-in-time component membership probabilities τij|t for firms 145-208.

ECB Working Paper 2084, June 2017 51



C.2 Histograms of maximum average point-in-time and filtered

component probabilities

Figure C.4 shows histograms of the maximum average point-in-time components probabilities

(maxj T
−1∑T

t=1 τ̂i,j|t) for the 208 banks in the sample (left panel). The point-in-time compo-

nent probabilities are defined as in equation (23)). The right panel shows a similar histogram for

maximum filtered component probabilities as defined below (23). Both histograms show that the

average probability of almost each bank to belong to its respective cluster is high, and many banks

are classified to belong to their clusters with probability 1 across all time points.
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Web Appendix D: Supervisory survey on banks’ peers

This section compares our classification results to a 2016 supervisory ECB/SSM bank survey (‘the-

matic review’).1 The confidential survey asked SSM-supervised banks which other banks they

considered to follow a similar business model. Of the banks that responded to the survey, 78 are

in our sample (37.5%). Each bank could list up to ten peers.

The survey is not an ideal benchmark for our clustering outcomes, for several reasons. First,

banks may have listed peers that are similar in only one aspect, such as a similar major business line,

instead of peers at the consolidated level as the latter are considerably more difficult to determine

(requiring, for example, a modeling framework as the one presented in the main text). Second,

the survey responses may be biased towards larger and better-known banks. Third, country-effects

may play a role: banks frequently reported peers that are located in the same jurisdiction. Country

location, however, played no role in our classification analysis. Fourth, strategic reporting may have

been present in some cases. Finally, the survey was undertaken at one point in time (2016), while

our empirical results are based on earlier multivariate panel data (between 2008–2015).

Table D.1: Contingency table
For banks in each business model (column 1) we report the fraction of business model membership of the

reported peers. The two highest entries in a row are printed in bold. We distinguish A: large universal

banks, including G-SIBs; B: corporate/wholesale-focused banks; C: fee-based banks/asset managers; D:

small diversified lenders; E: domestic retail lenders; and F: mutual/cooperative-type banks.

#1 #2 #3 #4 #5 #6 Total
A 63% 25% 0% 6% 6% 0% 16
B 0% 30% 70% 0% 0% 0% 10
C 19% 31% 50% 0% 0% 0% 16
D 0% 0% 44% 19% 4% 33% 27
E 0% 0% 0% 50% 50% 0% 2
F 0% 0% 57% 14% 0% 29% 7
Total 78

Despite these caveats, we may still expect to find most of the reported peers to come from the

same, or at least an adjacent2, business model component as determined by our multivariate panel

1The clustering presented in the main text is not used for micro-prudential supervision. We thank the
ECB MS I-IV team that assembled and conducted the thematic review.

2Components A–F are ordered in terms of declining average size (total assets), see Figure 2. In addition,
the components are approximately ordered in terms of complexity, ranging from large universal banks,
including G-SIBs (most complex), to smaller and more traditional banks (least complex).
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data methodology. This is the case. Table D.1 reports the respective fractions. The two highest

entries in a row are printed in bold. Rows A–C and E have more than 80% of responses in the same

and adjacent columns. Smaller banks in rows D and F frequently listed larger (C) banks as their

peers; these banks are probably comparable in only one business line, not at the consolidated level,

see the caveats above. We conclude that our business model classification outcomes approximately

corresponds to bank managements’ own views.
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Web Appendix E: Influence analysis

How sensitive are the clustering outcomes reported in the main paper to changes in the information

set? For example, does the size of a bank, as captured by (log) total assets, play a dominant role?

To explore these questions we define a divergence measure between clustering outcomes as

div(k) =

√√√√2−1J−1N−1
N∑
i=1

J∑
j=1

(
τ̂ij − τ̃ restr.,−kij

)2
, (E.1)

where τ̂ij are the full sample posterior probability estimates used in the main paper, and τ̃ restr.,−kij

are the corresponding component membership probabilities estimated from a restricted sample

which leaves out variable k. Table E.1 presents the deviation statistics.

The three highest entries of (E.1) are observed for i) the breakdown of total loans into retail and

commercial loans, ii) the domestic loans to total loans ratio, and iii) the loans to assets ratio. These

ratios play a major role in distinguishing the different business model groups. The first variable,

log total assets, is not particularly influential for the clustering outcome. We note, however, that

the information from the first variable is to some extent also contained in the second variable, log

leverage.

Table E.1: Influence of variables on clustering outcomes
The divergence statistics as defined in (E.1). The three most influential entries are printed in bold.

Variable div(k)
1. Total assets 0.028
2. Leverage w.r.t. CET1 capital 0.120
3. Net loans to assets 0.163
4. Risk mix 0.098
5. Assets held for trading 0.152
6. Derivatives held for trading 0.133
7. Share of net interest income 0.139
8. Share of net fees & commission income 0.110
9. Share of trading income 0.147
10. Retail loans 0.235
11. Domestic loans ratio 0.198
12. Loan-to-deposits ratio 0.130
13. Ownership index 0.144
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Web Appendix F: Additional figures

F.1 Data box plots across business models

Figure F.1 reports box plots for time-averages of the indicator variables; see Table B.1 for the

variable descriptions.
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Figure F.1: Box plots for indicator variables
We report box plots for twelve indicator variables; see Table B.1 for the variable descriptions. For each

variable, we consider the time series average over T = 32 quarters. In each panel, we distinguish (from left to
right): A: large universal banks, including G-SIBs; B: international diversified lenders; C: fee-based banks;
D: domestic diversified lenders; E: domestic retail lenders; and F: small international banks.
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F.2 Time-varying component standard deviations

Figure F.2 plots the filtered component-specific time-varying standard deviations std.devj,t(d) =√
Ωj,t(d, d) for variables d = 1, . . . , D−1. Allowing for time-varying component covariance matrices

results in significant increases in log-likelihood; see Table 3. The off-diagonal elements of Ωj,t are

not reported. Overall, the standard deviations tend to decrease over time from the high levels

observed during the financial crisis between 2008–2009. The variables (log) total assets and (the

inverse Probit of) the share of domestic loans to total loans are particularly dispersed across units

within a given component.
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Figure F.2: Time-varying standard deviations
Filtered time-varying standard deviations std.devj,t(d) =

√
Ωj,t(d, d) for variables d = 1, . . . , D − 1. Each

panel refers to a business model component A – F, and contains twelve standard deviation estimates over
time (one for each variable in Table B.1, except ownership, which is time-invariant). Mean and standard
deviation estimates are based on a t-mixture model with J = 6 components and dynamic covariance matrices
Ωj,t.
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Web Appendix G: Additional discussion of time-varying

component location parameters

G.1 Bank heterogeneity during crises

Banks may be more or less resilient to the occurrence of a financial crisis depending on their

respective business model. For example, in a study of U.S. and European banks during the financial

crisis between 2008–2009, Altunbas et al. (2011) argue that firms with higher leverage, larger size,

greater reliance on market funding, and aggressive credit growth before the crisis suffered more when

the crisis hit. Conversely, a strong customer deposit base and greater income diversification were

mitigating factors. Beltratti and Stulz (2012) confirm that bank balance sheet and profitability

characteristics played a role, and point to banks’ risk profiles and risk governance as additional

factors. Finally, in a study of U.S. banks, Chiorazzo et al. (2016) argue that smaller traditional

banks, including mutual/co-operative-type banks, were the most resilient to stress.

In our study of European data, Figure 2 in the main text suggests that the global financial

crisis between 2008–2009 had a differential impact on banks with different business models. Large

universal banks, including G-SIBs, appear to be the most affected. Many such banks held substan-

tial amounts of mortgage-related securities at the beginning of the 2008–2009 financial crisis. This

exposure explains the high ratio of net interest income to total income in 2008 for these banks, as

well as the negative contributions of trading income to total income in that year (panels 7 and 9 of

Figure 2). By contrast, domestic retail lenders (E) and small international banks (F) experienced

less variability in component means, particularly in the share of income sources.

We also observe differences in the variability of component means during the euro area sovereign

debt crisis between 2010Q1–2012Q2; see ECB (2014). This time, large universal banks (A) and

fee-based banks (C) appear to be the most affected. For both groups, net interest income decreases,

to below 60%, and market risks increases relative to credit risk (risk mix). Conversely, and again,

domestic retail lenders and small international banks were relatively less affected. This is in line

with the findings by Chiorazzo et al. (2016), for a different sample of banks.
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G.2 Post-crisis banking sector trends

This section continues our discussion of Figure 2 with a focus on banking sector trends. We also

refer to ECB (2016) for a detailed discussion.

The financial crisis of 2008–2009 and subsequent new regulatory requirements have had a pro-

found impact on banks’ activities and business models. Pre-crisis profitability levels of many

European banks were supported by high leverage ratios, reliance on relatively cheap wholesale

(non-deposit) funding, as well as, in some cases, elevated risk-taking with concentration risks in

securitization exposures and/or commercial real estate; see Ayadi et al. (2014) and ECB (2016).

Changes in the post-crisis regulatory framework3, however, have rendered some of these previously

profitable business strategies much less viable. In addition, adverse macroeconomic outcomes and

financial market conditions during the euro area sovereign debt crisis between 2010–2012 weakened

most European banks further.

Figure 2 suggests that banks adapt their respective business models to a changing financial and

regulatory environment. We focus on three main developments. First, we observe a stark reduction

in leverage (second panel in Figure 2) and wholesale funding (bottom right panel). Before the crisis,

euro area banks were more highly leveraged, on average, than their global peers, according to the

IMF (2009) and ECB (2016).4 After the crisis, banks’ adjustment to higher capital requirements

appear to have contributed to lower leverage ratios. The only exception is formed by mutual/co-

op banks, whose leverage ratios have increased over time. Similarly, new regulatory requirements

and the increased cost of wholesale funding seem to have pushed European banks to reduce their

over-reliance on wholesale funding sources.

Second, changes in regulation made certain business lines more costly, in particular trading

activities, thus providing banks with an incentive to scale down these activities.5 Panels five and six

of Figure 2 suggest that large universal banks substantially reduced their trading activities between

2012Q2–2015Q4. Derivatives held for trading declined from approximately 18% to approximately

3Examples include the Basel III rules, the Capital Requirements Directive (CRD) IV, the Bank Recovery
and Resolution Directive, mandatory bail-in rules, and the move to single banking supervision (SSM) and a
single resolution mechanism (SRM) in the euro area.

4Caveats apply. Relatively higher leverage ratios may have been related to different institutional prac-
tices, such as mortgage balance sheet retention. In addition, differences in accounting standards may have
mattered, such as the different treatment of derivatives under IFRS and US GAAP.

5For E.U. banks, the so-called Liikanen report recommended increased capital requirements for trading
business lines, and a mandatory separation of proprietary trading and other high-risk trading from core
activities. The Liikanen report was published in October 2012.
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14% of total assets on average for these banks. Assets held for trading declined from approximately

28% to 25% of total assets.

Third, there is some evidence of a shift towards retail business and away from investment

banking and corporate/wholesale lending activities. Specifically, the share of retail loans to total

loans is increasing for most banks, particularly in the low interest rate environment between 2012–

2015.
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Web Appendix H: Term structure factor sensitivities

Tables H.1 – H.4 present factor sensitivity estimates obtained by fixed effects panel regression.

Parameter estimates are either pooled across business models (column 2) and disaggregated across

business models (columns 3 to 8). The pooled estimates are identical to the fixed effect panel

regression estimates presented in the main text; see Table 4. Tables H.1 – H.4 report Driscoll-

Kraay standard error estimates with three lags.
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Table H.1: Disaggregated factor sensitivities
Yield factor sensitivities for bank-level accounting data. Factor sensitivity parameters are reported as pooled

across business models (column 2) as well as disaggregated across business model components A – F (columns

3 to 8). Parameter estimates and standard errors are obtained by fixed effects panel regression. Standard

errors are Driscoll-Kraay standard errors with three lags.

Dependent variable: ∆4 ln(Total Assets)t
All A B C D E F

∆4 levelt -0.0508*** -0.126*** -0.0612*** -0.0501*** -0.0286*** -0.0375 -0.0301
(0.0118) (0.0216) (0.00568) (0.0150) (0.00809) (0.0432) (0.0253)

∆4 slopet -0.0514*** -0.124*** -0.0662*** -0.0596*** -0.0256** -0.0306 -0.0371
(0.0123) (0.0228) (0.00804) (0.0150) (0.00921) (0.0394) (0.0253)

∆4 levelt−4 -0.0169*** 0.00622 -0.00888** -0.0143*** -0.0162*** -0.0454*** -0.0266***
(0.00422) (0.00992) (0.00341) (0.00291) (0.00261) (0.0128) (0.00924)

∆4 slopet−4 -0.0346*** -0.0287** -0.0257*** -0.0442*** -0.0169*** -0.0700*** -0.0406***
(0.00540) (0.0132) (0.00429) (0.00590) (0.00375) (0.0173) (0.00862)

Constant 0.0104* -0.0411*** -0.00999* 0.00783 0.0174*** 0.0494*** 0.0283***
(0.00578) (0.0133) (0.00490) (0.00729) (0.00502) (0.0162) (0.00915)

Observations 3,064 424 376 581 901 487 295
Number of groups 208 31 23 33 56 37 28
Within R2 0.0508 0.215 0.152 0.145 0.0191 0.0501 0.0697

Dependent variable: ∆4 ln(Leverage)t
∆4 levelt -0.0260** -0.0678* -0.0358 0.0107 0.00223 -0.0745*** -0.0474

(0.0116) (0.0354) (0.0235) (0.0177) (0.0204) (0.0255) (0.0341)
∆4 slopet -0.0267** -0.0768** -0.0435* 0.0116 0.00206 -0.0551* -0.0666*

(0.0112) (0.0362) (0.0252) (0.0177) (0.0222) (0.0273) (0.0388)
∆4 levelt−4 0.00685 0.0128 0.0159 0.0117* -0.00779 0.00930 0.000299

(0.00490) (0.0175) (0.00987) (0.00664) (0.00898) (0.0179) (0.0243)
∆4 slopet−4 -0.00777 -0.0113 -0.0120 -4.47e-05 -0.0185* 0.00154 -0.00507

(0.00567) (0.0170) (0.0110) (0.00653) (0.00996) (0.0172) (0.0188)
Constant -0.0425*** -0.0675*** -0.0621*** -0.0345*** -0.0298*** -0.0463*** -0.0327

(0.00344) (0.0175) (0.0103) (0.00641) (0.0102) (0.0141) (0.0207)
Observations 2,640 385 330 512 716 455 242
Number of groups 206 31 23 33 56 36 27
Within R2 0.00758 0.0519 0.0475 0.0209 0.00447 0.0113 0.0273

Dependent variable: ∆4 (Loan-to-Assets ratio)t
∆4 levelt 1.824*** 3.391*** 2.236*** 2.495*** 1.204*** 1.446** 0.0682

(0.292) (0.666) (0.394) (0.234) (0.258) (0.611) (0.619)
∆4 slopet 1.470*** 2.867*** 2.102*** 2.050*** 0.672** 1.483** -0.276

(0.303) (0.648) (0.486) (0.288) (0.276) (0.697) (0.654)
∆4 levelt−4 0.213** 0.186 -0.0928 0.714*** 0.173 -0.245 -0.0133

(0.0984) (0.300) (0.177) (0.0943) (0.151) (0.293) (0.259)
∆4 slopet−4 0.118 0.784** -0.0369 0.702*** -0.197 -0.161 -0.658**

(0.143) (0.358) (0.263) (0.112) (0.203) (0.321) (0.314)
Constant 0.236 0.914*** 0.197 0.316** -0.288*** 0.582* 0.0182

(0.138) (0.276) (0.212) (0.128) (0.0716) (0.337) (0.304)
Observations 2,902 368 341 530 885 487 291
Number of groups 208 31 23 33 56 37 28
Within R2 0.0251 0.120 0.0654 0.0590 0.0268 0.0114 0.0244
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Table H.2: Disaggregated factor sensitivities, ctd.
Yield factor sensitivities for bank-level accounting data. Factor sensitivity parameters are reported as pooled

across business models (column 2) as well as disaggregated across business model components A – F (columns

3 to 8). Parameter estimates and standard errors are obtained by fixed effects panel regression. Standard

errors are Driscoll-Kraay standard errors with maximum lag 3.

Dependent variable: ∆4 ln(Risk Mix)t
Cluster All A B C D E F
∆4 levelt 0.00586 -0.0807 -0.101*** 0.0567 0.0257* 0.0206 0.0850*

(0.0125) (0.0702) (0.0254) (0.0364) (0.0143) (0.0304) (0.0462)
∆4 slopet -0.00336 -0.112 -0.0983*** 0.0444 0.0367** 0.00175 0.0680

(0.0141) (0.0842) (0.0227) (0.0342) (0.0145) (0.0317) (0.0419)
∆4 levelt−4 -0.00465 0.0393 -0.0309*** -0.0225* -0.0221*** 0.00229 0.0392

(0.00527) (0.0309) (0.00431) (0.0117) (0.00540) (0.0143) (0.0352)
∆4 slopet−4 -0.00742 0.0167 -0.0445*** -0.0338** 0.00783 -0.0206 0.0458*

(0.00645) (0.0170) (0.00367) (0.0159) (0.00744) (0.0155) (0.0258)
Constant 0.0201*** 0.0577 0.00780 0.0269* -0.0479*** 0.0595*** 0.0792***

(0.00541) (0.0369) (0.00817) (0.0149) (0.00597) (0.0166) (0.0255)
Observations 2,179 342 229 444 572 388 204
Number of groups 203 30 22 33 55 36 27
Within R2 0.00218 0.0339 0.0765 0.0263 0.0335 0.0101 0.00735

Dependent variable: ∆4 (Assets held for trading/Total assets)t
∆4 levelt -0.00688** -0.0290** -0.00814*** -0.00926*** 0.00168 0.000203 0.00138***

(0.00327) (0.0115) (0.00203) (0.00310) (0.00168) (0.000869) (0.000416)
∆4 slopet -0.00489 -0.0236** -0.00541** -0.00583* 0.00237 0.000155 0.00117**

(0.00304) (0.0106) (0.00236) (0.00315) (0.00160) (0.000865) (0.000436)
∆4 levelt−4 0.000441 0.000375 0.00347*** -0.00282** 0.00193*** -0.000191 0.000790***

(0.00133) (0.00476) (0.00124) (0.00109) (0.000539) (0.000702) (0.000208)
∆4 slopet−4 -0.000742 -0.00704 0.000512 -0.00345* 0.00288*** -0.000622 0.000646**

(0.00153) (0.00534) (0.00162) (0.00178) (0.000532) (0.000716) (0.000243)
Constant -0.00238* -0.00739 -0.00132 -0.00319** -0.00121** -0.000348 0.000409***

(0.00127) (0.00538) (0.00136) (0.00136) (0.000501) (0.000426) (0.000131)
Observations 2,285 351 253 427 718 286 250
Number of groups 208 31 23 33 56 37 28
Within R2 0.0207 0.101 0.131 0.0314 0.0137 0.00449 0.0379

Dependent variable: ∆4 (Derivatives held for trading/Total assets)t
∆4 levelt -0.0111*** -0.0474*** -0.0165*** -0.0107*** -0.00197 0.00135** 0.000454

(0.00354) (0.0135) (0.00412) (0.00164) (0.00138) (0.000554) (0.000306)
∆4 slopet -0.0105*** -0.0459*** -0.0161*** -0.00989*** -0.00175 0.00145** 0.000468

(0.00339) (0.0127) (0.00404) (0.00233) (0.00125) (0.000529) (0.000289)
∆4 levelt−4 0.00237 0.0104 0.00313 0.00116 0.000301 0.000461** 0.000467***

(0.00159) (0.00628) (0.00198) (0.00109) (0.000520) (0.000219) (0.000139)
∆4 slopet−4 -0.000591 -0.00279 -0.00165 -0.00272* 1.36e-05 0.000393* 0.000312*

(0.00179) (0.00686) (0.00213) (0.00136) (0.000491) (0.000201) (0.000170)
Constant -0.00107 -0.00367 -0.00277 -0.000617 -0.000426 0.000207 0.000153

(0.00140) (0.00582) (0.00181) (0.00129) (0.000538) (0.000154) (0.000113)
Observations 2,286 335 225 407 697 369 253
Number of groups 208 31 23 33 56 37 28
Within R2 0.0656 0.216 0.257 0.165 0.0113 0.0420 0.0451
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Table H.3: Disaggregated factor sensitivities, ctd.
Yield factor sensitivities for bank-level accounting data. Factor sensitivity parameters are reported as pooled

across business models (column 2) as well as disaggregated across business model components A – F (columns

3 to 8). Parameter estimates and standard errors are obtained by fixed effects panel regression. Standard

errors are Driscoll-Kraay standard errors with maximum lag 3.

Dependent variable: ∆4 (Net interest income/Operating revenue)t
Cluster All A B C D E F
∆4 levelt 1.931 -6.797 4.614 5.992** 2.985 0.184 -2.010

(2.040) (4.742) (5.120) (2.195) (1.753) (4.745) (3.212)
∆4 slopet 2.712 -4.185 9.581 5.449** 1.983 2.432 -3.232

(1.868) (5.466) (6.127) (2.131) (1.837) (5.062) (3.405)
∆4 levelt−4 -1.160** -2.262* -3.095 -0.348 0.131 -1.947 -3.034***

(0.536) (1.174) (2.170) (0.617) (0.863) (2.644) (0.971)
∆4 slopet−4 -2.191*** -5.764*** -5.356** -1.426 0.482 -2.323 -4.436***

(0.631) (1.642) (2.488) (0.985) (1.093) (3.257) (1.309)
Constant 0.118 -0.988 0.947 0.918 -0.250 0.315 -1.198

(0.839) (2.158) (3.878) (1.333) (0.838) (2.465) (0.913)
Observations 2,836 363 337 511 847 488 290
Number of groups 208 31 23 33 56 37 28
Within R2 0.00287 0.0286 0.0119 0.00784 0.00183 0.00547 0.0502

Dependent variable: ∆4 (Fee & commissions income/Operating income)t
∆4 levelt 0.371 1.447 1.703 0.234 -0.986 0.184 2.591

(0.664) (0.954) (1.767) (0.728) (0.987) (1.631) (2.216)
∆4 slopet 1.606** 2.757** 4.382* 0.497 0.0402 1.767 3.889*

(0.740) (1.147) (2.121) (0.638) (1.107) (1.798) (2.207)
∆4 levelt−4 -1.293*** -2.243*** -1.452* -1.213*** -1.392 -1.290 0.844

(0.414) (0.586) (0.737) (0.206) (0.897) (0.945) (0.905)
∆4 slopet−4 -1.335** -2.091*** -1.630 -1.068*** -2.114 -0.895 1.834

(0.572) (0.479) (1.005) (0.322) (1.314) (1.249) (1.429)
Constant -0.0291 -0.184 0.197 0.356 -0.441 -0.270 0.980

(0.313) (0.867) (1.241) (0.257) (0.856) (0.827) (0.814)
Observations 2,827 365 336 501 847 488 290
Number of groups 208 31 23 33 56 37 28
Within R2 0.00391 0.0177 0.0165 0.0261 0.00205 0.0117 0.0270

Dependent variable: ∆4 (Trading income/Operating income)t
∆4 levelt -0.0509 12.40*** 0.623 -1.792 -1.755 -4.171 1.448

(1.871) (4.188) (2.611) (2.585) (1.725) (3.010) (1.518)
∆4 slopet 1.041 14.55*** 0.587 -0.0568 -0.786 -3.110 1.636

(1.610) (4.831) (2.344) (2.168) (1.532) (2.844) (1.509)
∆4 levelt−4 0.686 0.575 1.988*** 1.078 0.0964 0.189 1.125***

(0.433) (0.948) (0.581) (0.639) (0.614) (0.930) (0.372)
∆4 slopet−4 1.243** 3.255** 2.931*** 1.586* 0.0644 0.0130 1.710***

(0.509) (1.488) (1.012) (0.811) (0.827) (1.301) (0.335)
Constant -0.0375 1.492 0.923 -0.334 0.0888 -1.698 0.364

(0.711) (1.731) (1.094) (1.048) (0.772) (1.317) (0.301)
Observations 2,737 329 328 499 835 477 269
Number of groups 208 31 23 33 56 37 28
Within R2 0.00745 0.0448 0.0150 0.0234 0.00416 0.0166 0.0226
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Table H.4: Disaggregated factor sensitivities, ctd.
Yield factor sensitivities for bank-level accounting data. Factor sensitivity parameters are reported as pooled

across business models (column 2) as well as disaggregated across business model components A – F (columns

3 to 8). Parameter estimates and standard errors are obtained by fixed effects panel regression. Standard

errors are Driscoll-Kraay standard errors with maximum lag 3.

Dependent variable: ∆4 (Retail loans/Retail and commercial loans)t
Cluster All A B C D E F
∆4 levelt 0.00562*** 0.00129 0.00252 0.0108*** 0.00141 0.0113*** -0.00195

(0.00194) (0.00316) (0.00480) (0.00351) (0.00373) (0.00398) (0.00828)
∆4 slopet 0.00615*** 0.00161 0.00905* 0.0125** 0.00598 0.00249 -0.00188

(0.00174) (0.00289) (0.00521) (0.00456) (0.00391) (0.00438) (0.00911)
∆4 levelt−4 -0.00210*** -0.00438 -0.00766*** -0.00175 -0.00252 0.00193 -0.00193

(0.000714) (0.00261) (0.00191) (0.00209) (0.00191) (0.00136) (0.00498)
∆4 slopet−4 0.000269 -0.00122 0.00280 0.000726 -0.000720 -0.00326 0.00751

(0.00102) (0.00262) (0.00266) (0.00122) (0.00243) (0.00265) (0.00616)
Constant 0.00728*** 0.00404* 0.00165 0.00823*** 0.0140*** 0.00730*** -0.00500

(0.00117) (0.00231) (0.00288) (0.00172) (0.00235) (0.00230) (0.00436)
Observations 1,895 232 222 301 564 359 217
Number of groups 181 22 23 24 50 35 27
Within R2 0.00578 0.0149 0.122 0.0151 0.0176 0.0481 0.0184

Dependent variable: ∆4 (Domestic loans/Total loans)t
∆4 levelt 1.225*** 1.158* 3.736*** 1.418*** 0.384 0.0161 2.581*

(0.291) (0.563) (1.009) (0.374) (0.447) (0.205) (1.466)
∆4 slopet 1.182*** 0.975 3.281** 1.335*** 0.843 -0.204 2.157

(0.395) (0.667) (1.270) (0.347) (0.619) (0.197) (1.541)
∆4 levelt−4 -0.200 -0.110 -0.972 -0.880*** -0.0727 -0.0505 0.812*

(0.196) (0.470) (0.836) (0.163) (0.197) (0.0907) (0.404)
∆4 slopet−4 -0.111 -0.406 -0.753 -0.952*** 0.0230 -0.105 1.529**

(0.189) (0.431) (0.863) (0.151) (0.195) (0.118) (0.575)
Constant 0.362 0.394 0.0225 0.0795 0.359 -0.138* 1.669***

(0.212) (0.369) (0.750) (0.125) (0.250) (0.0742) (0.514)
Observations 1,498 227 162 234 426 252 197
Number of groups 172 27 20 22 42 36 25
Within R2 0.00633 0.00929 0.0423 0.0671 0.0140 0.0224 0.0188

Dependent variable: ∆4 (Loans-to-deposits ratio)t
∆4 levelt -0.230 -1.754 -3.275* 2.924 -1.534 0.347 0.620

(0.498) (1.837) (1.705) (2.080) (1.510) (1.642) (1.462)
∆4 slopet -1.047 -2.254 -4.992** 2.143 -2.711* 0.318 0.856

(0.700) (2.436) (2.223) (2.362) (1.506) (1.805) (1.312)
∆4 levelt−4 0.277 -0.381 -0.663 1.676** 1.335** 0.104 -3.743***

(0.279) (0.764) (0.906) (0.753) (0.636) (0.711) (0.657)
∆4 slopet−4 0.0282 -0.828 -2.825** 2.533** 0.345 1.086 -2.350***

(0.349) (0.878) (1.157) (1.015) (0.549) (0.692) (0.518)
Constant -1.973*** -2.045* -2.666** -2.261* -1.537*** -1.581** -3.443***

(0.362) (1.152) (1.220) (1.138) (0.424) (0.597) (0.610)
Observations 2,417 320 273 406 771 391 256
Number of groups 207 31 22 33 56 37 28
Within R2 0.00426 0.00371 0.0395 0.0209 0.0168 0.0138 0.0466
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Web Appendix I: Extended score-driven model

Term structure factors can also be added to the econometric specification as discussed in Section

2.4.3. Given the limited number of T = 32 time series observations, we pool the coefficients Bj

across mixture components Bj ≡ B to reduce the number of parameters. Falling interest rates

have been argued to push banks to do more business at squeezed rates, take more risk, and change

their asset composition; see e.g. Hannoun (2015), Abbassi et al. (2016), and Heider et al. (2017).

Consequently, yield curve factors could help predict future average business model characteristics.

Table I.1 reports the parameter estimates. The increased log-likelihood values suggest a slightly

better fit than the baseline specification. Most coefficients in B, however, are statistically insignif-

icant according to their t-values. When significant, the predictive effects appear to be small in

economic terms. For example, a 100 bps drop in the level factor predicts a fall in the ratio of net

interest income to operating revenue of 1.3 percentage points over the next quarter.

Table I.1: Factor sensitivity estimates: GAS-X model
We report parameter estimates associated with the extended GAS-X model as introduced in (22); see Sec-

tion 2.4.3. The baseline model M0 contains no additional conditioning variables. Model M1 uses changes

in the level factor ∆lt to predict one-quarter ahead changes in the mean of each variable. Model M2 uses

changes in the short rate ∆(lt + st) for prediction. Coefficients Bj are pooled across mixture components

Bj ≡ B, and scaled up by a factor of 100 for readability. Conditioning variables are in percentage points

(ppt). Estimation sample is 2008Q1 – 2015Q4.

M0 M1 M2
Xt – ∆lt ∆(lt + st)

par t-val par t-val par t-val
A1 0.95 23.6 0.93 21.4 0.91 21.2
A2 0.62 67.7 0.62 62.9 0.62 67.6
ν 5.66 17.2 5.65 16.9 5.65 17.0
ln(TA)t -0.12 0.1 -1.67 0.9
ln(Lev)t 0.10 0.3 1.40 2.2
(TL/TA)t 0.07 0.7 0.12 0.7
ln(RM)t 0.26 0.6 -0.83 1.1
(AHFT/TA)t -0.01 1.3 0.01 0.4
(DHFT/TA)t -0.01 1.5 0.01 0.6
(NII/OR)t 0.35 2.6 1.30 4.6
(NFC/OI)t 0.00 0.0 0.33 2.1
(TI/OI)t -0.30 2.6 -1.62 5.8
(RL/TL)t -0.09 0.6 -0.32 1.3
(DL/TL)t -0.67 1.0 -1.16 1.0
(TL/Dep)t 0.14 0.4 0.08 0.1
loglik 29,190.3 29,197.1 29,212.9
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