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C Systemic risk, contagion and financial networks168 

This special feature proposes a methodology to measure systemic risk as the 
percentage of banks defaulting simultaneously over a given time horizon for a given 
confidence level. The framework presented here is applied to euro area banks. It is 
observed that since the announcement of the comprehensive assessment in October 
2013 banks have significantly reshuffled their security portfolios. This has resulted in 
a decline in the probability of systemic events occurring. 

Introduction 

Although widely referred to, the concept of systemic risk remains elusive and hard to 
quantify (see, for instance, Hansen (2013)).169 In an attempt to fill this gap, this 
special feature defines systemic risk as the risk that a “large” number of banks 
default simultaneously with negative reverberating effects on the real economy. In 
line with this definition, this article measures systemic risk as the systemic Value-at-
Risk of a banking system, i.e. as the percentage of banks going bust simultaneously 
over a given time horizon for a given confidence level. By reverse engineering, this 
framework also allows us to evaluate the probability that a systemic event occurs: 
after setting a percentage of banks failing simultaneously, the probability associated 
with this event is estimated. 

The estimates of the systemic Value-at-Risk and of the probability of a systemic 
event are derived from a distribution of the yearly number of bank defaults. In the 
proposed framework, contagion is the factor generating fat tails in this distribution, 
which allows us to capture systemic risk. In particular, the model characterises 
contagion through fire sales: if a bank defaults because of an idiosyncratic shock, 
this failure can contaminate other banks via their common exposures. Failing banks 
liquidate their security portfolios, transmitting shocks from one bank to another 
through fire sales. 

The distribution of the number of bank defaults is generated with Monte Carlo 
simulation techniques using data relative to the network of banks’ common 
exposures. This enables the model to capture how the topology of a banking system 
network affects systemic risk: it is the architecture of such a network that determines 
how contagion propagates and how resilient the system is. Specifically, this 
distribution is derived by letting banks fail in line with their idiosyncratic shocks, 
which can trigger as a consequence a fire sale. 

Empirical evidence supports the intuition that systemic risk materialises in parallel 
with a “large” number of banks failing at the same time and permits us to qualify the 
notion of “large”. When looking at the number of bank defaults in the United States 
from 1934 to 2014, three episodes stand out: the Great Depression in the 1930s, the 
                                                                    
168  Prepared by Lorenzo Cappiello, Linda Fache Rousová and Mattia Montagna. 
169  Hansen, L.P. (2013), “Challenges in Identifying and Measuring Systemic Risk”, in Brunnermeier, M.K. 

and Krishnamurthy, A. (eds.), Risk Topography: Systemic Risk and Macro Modelling, NBER Books 
Series. 



 

Financial Stability Review, November 2015 147 

savings and loan crisis in the 1980s and the 1990s, and the recent financial crisis in 
the second half of the 2000s (see the left-hand panel of Chart C.1). It can be safely 
argued that systemic risk materialised during these three episodes. Next, the yearly 
percentage of US failing banks is computed. This is done by dividing the number of 
bank defaults at the end of each year by the number of active banks at the beginning 
of the year. The right-hand panel of Chart C.1 reports the empirical distribution of this 
percentage of bank failures. Two key points are revealed by this distribution. First, 
since systemic events are defined as those episodes characterised by the 
simultaneous failure of a “large” number of banks, the distribution enables us to 
qualify the notion of “large”. The right-hand panel of Chart C.1 shows that when more 
than 3% of the total number of banks fail at the same time, a deep financial crisis 
ensues. Second, the shape of the distribution is fat tailed, which can only be 
explained by introducing non-zero correlations between banks’ default probabilities. 
Moreover, since the standard deviation of the distribution is equal to 0.8 but the 
probability mass in its tail is quite large, a Gaussian function cannot describe it. A 
Gaussian distribution of the number of bank defaults would imply that crises wiping 
out more than 3% of the US banking system would occur once every 700 years. 

Chart C.1 
Historical distribution of bank defaults in the United States 

(x-axis: number of defaulting banks; percentages) 

 

Sources: Federal Deposit Insurance Corporation and ECB calculations. 
Notes: The left-hand panel reports the total number of defaults in the United States from 1934 to 2014. The right-hand panel reports the distribution of the yearly percentage of US 
failing banks computed as a fraction of the total number of active banks. 

The approach proposed in this special feature has two main advantages over other 
methodologies. First, systemic risk is measured without relying on historical data. 
Instead, its estimate is based on the actual architecture of a banking network and on 
a simple contagion mechanism. Since systemic events are rare, historical data 
typically do not contain enough information to make proper inference. Similarly, 
measures of systemic risk based on past asset prices suffer from the drawback that 
price developments are cyclical. Asset prices do not necessarily convey information 
about vulnerabilities well in advance of a crisis, often collapsing just before a crisis 
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materialises.170 Second, this framework enables us to isolate the role of contagion in 
generating systemic risk. Shedding light on the root factors of systemic risk has vast 
policy implications since it allows policy-makers to adopt the most efficient risk-
mitigation measures. Finally, providing a measure to quantify systemic risk can 
contribute to increasing the accountability of the policies aimed at counteracting it. 

Although the concepts discussed in this special feature are sufficiently general and 
can be applied to the whole financial system, this article focuses on banks. Similarly, 
although contagion materialises through fire sales for the purpose of the discussion, 
the framework is general enough to accommodate a variety of contagion models. 

Methodology 

When deriving the distribution of the number of bank defaults, it is necessary to take 
into account that banks’ default probabilities are correlated. Such correlations 
produce fat tails in the distribution and therefore constitute the key ingredient to 
capture systemic events. In this framework, contagion is the main factor generating 
non-zero correlations between the probabilities of banks’ defaults (for a formal 
sketch of the methodology, see the box). 

The specific contagion mechanism which is used in this special feature is a fire-sale 
model in the spirit of Greenwood et al. (2015) 171 and Eisenbach et al. (2015).172 In 
such a model, after an idiosyncratic shock, banks sell off assets to restore their 
desired target leverage. But sales can depress asset prices, ultimately eroding other 
banks’ capital, which may trigger another bout of sales and may further contract 
prices and reduce capital, until a new equilibrium is achieved.173  

The distribution of the number of bank defaults is obtained by adopting the following 
simulation strategy. At each time t, banks are allowed to fail according to their 
idiosyncratic default probability. Then, it is assumed that each failing bank liquidates 
its security portfolio, depressing securities’ prices and triggering fire sales, which can 
eventually produce further defaults. But there is more to it than that. In the framework 
proposed here, the propagation and amplification of shocks, and ultimately the 
stability of the banking system, will depend on the topology of the network of banks’ 
overlapping portfolios. While shocks to individual banks are transmitted to the whole 
banking system via the contagion mechanism of the fire sales, such transmission 
varies according to the architecture of the network of banks’ common asset 
exposures. Thanks to this intuition, the construction of the distribution of the number 
of bank defaults takes into account the topology of the interbank network. 

                                                                    
170  For example, in the week before its demise, Lehman Brothers’ senior bonds were rated A by Standard 

& Poor’s and A2 by Fitch. See Giglio, S. (2014), “Credit Default Swap Spreads and Systemic Financial 
Risk”, Working Paper.  

171  Greenwood, R., Landier, A. and Thesmar, D. (2015), “Vulnerable Banks”, Journal of Financial 
Economics, Vol. 115, Issue 3, pp. 471-485, March.  

172  Eisenbach, T. and Duarte, F. (2015), “Fire-Sale Spillovers and Systemic Risk”, Federal Reserve Bank 
of New York Staff Report, No 645, February. 

173  See also Cappiello, L. and Supera, D. (2014), Fire-sale externalities in the euro area banking sector, 
Financial Stability Review, European Central Bank, November. 

http://www.hbs.edu/faculty/Pages/download.aspx?name=vulnerable%20banks%20jfe.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2340669
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The idiosyncratic shocks to individual institutions are by definition uncorrelated. By 
analysing the effect of such shocks, the framework enables us to isolate the 
contribution of contagion to systemic risk, since the impact which may be due to 
other shocks hitting simultaneously all banks’ balance sheets are removed. 

After constructing the distribution of the number of bank defaults it is possible to 
estimate the systemic Value-at-Risk and the probability of a systemic event. For 
instance, setting the probability that a systemic event occurs to a pre-specified 
probability 𝛽 (e.g. 5%), the associated Value-at-Risk (SysVaR𝑐(𝛽)) indicates the 
percentage of banks (e.g. 20%) going bust in such an event (see the left-hand panel 
of Chart C.2 for illustration). By reverse engineering, if a systemic event is 
considered to occur where at least s% of banks (e.g. 20% of banks) go bust 
simultaneously, the framework allows us to estimate the probability Pm(s) that such a 
systemic event occurs (see the right-hand panel of Chart C.2). 

Once the systemic Value-at-Risk is estimated, it is necessary to evaluate whether it 
is indicative of a systemic event. In line with empirical evidence collected for the US 
banking system (according to which a simultaneous failure of more than 3% of banks 
is associated with a deep financial crisis – see Chart C.1), each time the systemic 
Value-at-Risk is larger than 3%, a systemic crisis can materialise with a probability 
larger than 𝛽.  

Chart C.2 
Measuring systemic risk 

Probability density function 
(x-axis: number of defaulting banks; percentages) 

 

Source: ECB calculations. 
Notes: The left-hand panel reports an example of the 𝑆𝑦𝑠𝑆𝑆𝑃(𝛽). Given a confidence level 𝛽, 𝑆𝑦𝑠𝑆𝑆𝑃(𝛽) represents the fraction of failing banks such that the probability of having 
more than 𝑆𝑦𝑠𝑆𝑆𝑃(𝛽) defaults is equal to 𝛽. The right-hand panel reports the probability of having a systemic event. Given a threshold representing a number of bank defaults such 
that a systemic event occurs, 𝑃𝑚(𝑠) represents the probability of such an event occurring. 

Box  
Theoretical framework 

This box shows that non-zero correlations between banks’ default probabilities produce fat tails in 
the distribution of the number of bank failures. When such correlations are different from zero, the 
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probability that a given number of bank defaults is higher than a given threshold is larger than the 
case in which the same probability is computed under the assumption of zero correlations. As a 
consequence, looking at individual banks’ default probabilities cannot guarantee financial stability. 

Consider a set of N banks, indexed by i = 1, 2,…, N. Each bank i is characterised by a given level of 
equity ei. It is assumed that at any point in time t ∈ [0,T] a bank defaults if its equity becomes 
negative. Regulators seek to ensure that the probability of banks’ default remains below a given 
threshold by limiting the amount of risk which they can take on. Of course, regulators cannot reduce 
the probability of default to zero since this would mean that banks would not take any risk, including 
for example the risk deriving from lending to non-financial firms. For the banking system to play its 
role in the economy, the regulator has to tolerate that each bank bears a given risk of default. By 
imposing regulatory requirements, regulators decide the acceptable probability of failure α of each 
bank (in Basel II α is equal to 1/1000 and is defined over the time horizon (T) of one year).174 

One can formalise these concepts as follows: 

𝑃𝑃{𝑒𝑐(𝑡) ≤ 0} ≤ 𝛼, 𝑡 ∈ [0, 𝑇], 𝑖 =  1,2, … , 𝑁 . 

Case A. Banks' probabilities of default are uncorrelated 

Under the assumption that banks’ probabilities of default are uncorrelated, the banking system as a 
whole is relatively stable and the possibility that a financial meltdown occurs is remote. This can be 
easily shown by computing the probability of systemic events, i.e. the probability of a simultaneous 
default of a large number of banks over the time horizon [0, T]. To this end, let us consider the set 
of stochastic variables 𝛩1, … , 𝛩𝑐 , … , 𝛩𝑁 which take on value one if bank i defaults, and value zero 
otherwise:175 

𝛩𝑐(𝑇) = �1, 𝑖𝑖 𝑒𝑐(𝑡) ≤ 0 at any time 𝑡 ϵ [0, T]
0, 𝑜𝑡ℎ𝑒𝑃𝑒𝑖𝑠𝑒 . 

The total number of defaults over the considered time period is given by: 

𝑁𝑑(𝑇) = ∑ 𝛩𝑐(𝑇)𝑁
𝑐=1 . 

To compute the distribution of 𝑁𝑑(𝑇), let us exploit the fact that each variable 𝛩𝑐(𝑇) follows a 
Bernoulli distribution: 

𝛩𝑐(𝑇) = �
1, 𝑒𝑖𝑡ℎ 𝑝𝑃𝑜𝑝𝑆𝑝𝑖𝑝𝑖𝑡𝑦 𝛼

0, 𝑒𝑖𝑡ℎ 𝑝𝑃𝑜𝑝𝑆𝑝𝑖𝑝𝑖𝑡𝑦 (1 − 𝛼).  

Since it is assumed that the pairwise default probabilities are uncorrelated – which is tantamount to 
assuming that the stochastic variables are independent – by the Central Limit Theorem (CLT), the 
distribution of 𝑁𝑑(𝑇) tends, for N large enough, to a Gaussian distribution characterised by mean 
Nα and variance Nα(1 −  𝛼). When considering the percentage of the number of bank failures, the 
distribution of 𝑛𝑑, where 𝑛𝑑 = 𝑁𝑑/𝑁, will be: 

                                                                    
174  Note that this framework is a stylised version of the risk-based regulatory approach adopted, e.g. by 

the Basel Committee on Banking Supervision (BCBS). See Bank for International Settlements (2006), 
Basel II: International Convergence of Capital Measurement and Capital Standards: A Revised 
Framework, June. The BCBS assigns risk weights to assets to compute the amount of capital that 
banks have to hold. This enables banks to bear losses which could materialise for a given confidence 
level. This way, the regulator establishes the tolerable default probability for a bank. 

175  In this framework, we exclude the possibility of recoveries. 
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𝑛𝑑(𝑇) ~ 𝑔 �𝛼, 𝛼(1−𝛼)
𝑁

�, 

where 𝑔(∙) denotes a Gaussian probability density function. 

In practice this result holds when N is larger than 50. Having defined the distribution of 𝑛𝑑(𝑇), it is 
now possible to compute the probability that systemic events occur. In this framework systemic risk 
is defined as the likelihood that more than 𝑁𝑠 defaults occur over the time period [0,T]. For very 
large N, defining 𝑛𝑠 = 𝑁𝑠/𝑁, the probability that 𝑛𝑑  is greater than 𝑛𝑠 is: 

𝑃𝑃{𝑛𝑑 > 𝑛𝑠} = ∫ 𝑔 �𝑥; 𝛼, 𝛼(1−𝛼)
𝑁

� 𝑑𝑥1
𝑛𝑠

. 

To illustrate, let us assume that, in a banking system composed of N = 1000 banks, the regulator 
sets a threshold for the default probability equal to α= 0.001. Then the probability of having a 
systemic event with 𝑁𝑠 = 20 failures can be considered virtually inexistent.176 In this framework, the 
soundness of each bank is enough to ensure financial stability. 

Case B. Banks’ probabilities of default are correlated 

Consider now the case in which banks’ default probabilities are correlated and let us explore the 
impact that such non-zero correlations have on systemic risk. To this end, it is necessary to 
compute the distribution of 𝑁𝑑(𝑇) when the assumptions for the CLT to hold are no longer valid. 
Following the approach of Vasicek (1987) for a loan portfolio,177 now banks’ equity levels are 
assumed to be correlated. This implies that the associated distribution of the percentage of the 
number of bank failures will be: 

𝑛�𝑑(𝑇)~�1−𝜌
𝜌

𝑒𝑥𝑝 �− 1
2𝜌

��1 − 𝜌𝐺−1(𝑛𝑑) − 𝐺−1(𝛼)�
2

+ 1
2

�𝐺−1(𝑛𝑑)�
2

�, 

where 𝐺(·) denotes the cumulative Gaussian distribution function and 𝜌 is the pairwise (non-zero) 
correlation among banks’ default probabilities. This probability density function denotes the 
distribution of the number of defaults (expressed as a percentage of the total number of banks 𝑁) 
when the pairwise correlation between two banks’ default probabilities is non-zero. Importantly, the 
default probability of each individual bank is still equal to α, as it was in the case where correlations 
were equal to zero. However, the distribution of the total number of defaults is different. This result 
also holds when the correlations between banks’ default probabilities are not pairwise the same. 
Note that when 𝜌 = 0, 𝑛�𝑑(𝑇) collapses to 𝑛𝑑(𝑇). 

By way of illustration, in line with the previous example, one can assume that the regulator tolerates 
a default probability equal to α = 0.001 for each bank, and that the total number of banks is equal to 
N=1000. However, the correlation coefficient is now different from zero and equal to ρ = 0.3. In this 
case, the probability of having more than 𝑁𝑠 = 20 defaults is roughly equal to 0.007: systemic 
events become plausible. 

 

                                                                    
176  Specifically, the probability of 20 banks failing is equal to 10−20. 
177  See Vasicek O. (1987), Probability of loss on loan portfolio, KMV Corporation, February. 
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Data 

In order to capture the overlapping portfolios in the euro area banking system, this 
article uses two relatively new ECB datasets. These datasets are the individual 
monetary financial institutions’ (MFI) balance sheet data and the securities holdings 
statistics (SHS) data. Furthermore, the SHS dataset is complemented with 
information about capital and leverage ratios obtained from the European Banking 
Authority (EBA). 

Owing to their relatively large time coverage, a subset of the individual MFI balance 
sheet data is used to compute the development of systemic risk over time (see the 
section entitled “Systemic risk in the euro area: the time dimension”). Data include 
observations from 2007 to 2014 at monthly frequency and cover around one hundred 
euro area MFIs. The MFI balance sheet data, however, do not provide detailed 
information on banks’ overlapping portfolios. 

To overcome this limitation, this special feature also makes use of SHS data, which 
contain granular security-by-security information on the overlapping portfolios of 
individual banks (see the section entitled “Systemic risk in the euro area: recent 
snapshots”). More specifically, the SHS dataset includes individual securities’ 
holdings by the 26 largest banking groups headquartered in the euro area at 
quarterly frequency (SHS Group data).  

To construct overlapping portfolios for the full euro area banking system, the SHS 
Group data are combined with SHS Sector data, which provide information on 
security-by-security holdings by the aggregate banking systems of the 19 euro area 
Member States.178 Currently, the SHS dataset covers only a short time period – it is 
available as of the fourth quarter of 2013.179 

Systemic risk in the euro area: the time dimension 

By applying the methodology discussed in the previous section to the euro area 
banks covered in individual MFI balance sheet data, this section computes the 
dynamic evolution of the systemic Value-at-Risk when a contagion mechanism 
operates (SysVaR𝑐

𝑐(𝛽)) and when it does not (SysVaR𝑐(𝛽)).180 In particular, the 
systemic Value-at-Risk denotes the number of bank defaults (as a fraction of the 
total number of active banks) with a probability no larger than a given 𝛽. In this article 
𝛽 is set equal to 0.01.  

When assuming no contagion, SysVaR𝑐(𝛽) is constant over time and is equal to 2.8% 
(see the yellow line in the left-hand panel of Chart C.3). By contrast, the blue line 
reported in the same panel denotes the systemic Value-at-Risk when a contagion 
                                                                    
178  The security portfolios of the banks included in the SHS Group sample are subtracted from these 

banking system aggregates by country.  
179 For more information about SHS data, see ECB (2015), “Who holds what? New information on 

securities holdings”, Economic Bulletin, Issue 2.  
180  The contagion mechanism is not operating if market liquidity is infinite, which implies that the price of 

securities does not change after a sale. 
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mechanism is operating. In particular, SysVaR𝑐
𝑐(𝛽) represents, at each time t, the 

Value-at-Risk of the distribution of the number of bank defaults – i.e. the percentage 
of bank failures with a confidence level equal to 𝛽 = 0.01. Unlike the SysVaR𝑐(𝛽), 
SysVaR𝑐

𝑐(𝛽) varies over time, since its computation takes into account a time-varying 
deleveraging process which reflects variations in banks’ balance sheets. The 
distance between the blue line and the yellow line denotes the systemic risk which 
derives from contagion and, in particular, fire sales. 

At the beginning of the sample, the systemic Value-at-Risk is computed under the 
assumption that there is contagion as high as 10%, which means that, with a 
probability of 1%, more than 10% of the banks in the sample could fail. The 
SysVaR𝑐

𝑐(𝛽) reaches its peak at the end of 2008, when more than 13% of the banks 
could go bust with a probability of 1%, to decline sharply thereafter. In the last part of 
our sample, the blue line and yellow line coincide, which implies that the contagion 
mechanism is not playing any role. Changes in the level of systemic risk can be due 
to changes in the banks’ security portfolios or changes in banks’ capital. 

The left-hand panel of Chart C.3 provides an important policy message: when 
considering idiosyncratic default probabilities, it is necessary to take banks’ 
interconnections into account in order to capture how a bank idiosyncratic shock can 
reverberate across the whole banking system and become systemic. Moreover, 
since the Value-at-Risk is computed at a relatively high confidence level (1%), and 
since there is an upper bound for the banks’ default probabilities, under the 
assumption of no contagion, ensuring the stability of individual banks would be 
sufficient to guarantee the stability of the whole system – but since banks’ default 
probabilities are positively correlated such an approach is, in fact, insufficient to 
preserve stability in the system as a whole.181 

This framework can also be used to compute the probability that a systemic financial 
crisis occurs. By setting the percentage of banks going bust simultaneously – which 
here is set at 5% – it is possible to estimate the probability that such a systemic 
event occurs.182 Such probability, which is depicted by the blue line in the right-hand 
panel of Chart C.3, increases sharply in the second half of 2007, reaching its peak in 
March 2008. As of 2010, this probability becomes negligible and it is 
indistinguishable from the probability of a systemic event when there is no contagion 

                                                                    
181  In line with the regulatory framework, we assume that the idiosyncratic individual bank default 

probability is equal to 0.001, which is an upper bound. In principle, one should use the real banks’ 
default probabilities. However, since such probabilities are pro-cyclical, it is preferred to keep them 
constant at their upper bound and study how variations in balance sheets affect the probability of 
systemic events. This allows us to isolate a particular contagion mechanism – the fire sales – from 
other factors which could influence systemic risk measures. 

182  Although the number of yearly bank defaults in the United States from 1934 to 2014 suggests that a 
deep financial crisis ensues when a fraction equal to or larger than 3% of the banking system fails 
simultaneously, the sample under consideration includes a relatively small number of banks (roughly 
one hundred). Therefore, a conservative approach is adopted, defining systemic events as those 
characterised by at least 5% of simultaneous bank defaults. 
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in the banking system. In the case no contagion takes place (yellow line), the 
probability that a systemic events occurs is constant and equal to zero.183 

Chart C.3 
Systemic risk: the time dimension 

Probability of systemic event 
(percentages) 

 

Sources: ECB (individual MFI balance sheet items statistics) and ECB calculations. 
Note: The left-hand panel reports the 𝑆𝑦𝑠𝑆𝑆𝑃(1%) and the right-hand panel represents the probability of having a systemic event 𝑃𝑚(5%), both in the case where contagion occurs 
(blue line) and in the case there is no contagion (yellow line).  

Systemic risk in the euro area: recent snapshots 

In this section, the systemic Value-at-Risk is computed using a different dataset, the 
securities holdings statistics (SHS). Although the time length of this dataset is rather 
short – observations start in the fourth quarter of 2013 – its fine granularity enables 
us to obtain recent snapshots of systemic risk estimates, which account for the 
network of securities’ overlapping portfolios. 

The left-hand panel of Chart C.4 reports the systemic Value-at-Risk with a 
confidence level equal to 1% computed in two cases, i.e. the case in which a 
contagion mechanism operates, and the case in which no fire sales occur. Although 
the marginal default probabilities of banks are the same in the two cases, 
correlations induced by common exposures increase the fragility of the financial 
system. The right-hand panel of Chart C.4 reports the probability that a systemic 

                                                                    
183  The sovereign debt crisis is not captured by the measures of systemic risk proposed here. The reason 

is that these measures do not consider any price shock which is not generated by the financial system 
itself. After shocking the system by letting banks fail according to a probability specified by the regulator 
(1/1000), fire sales are triggered. The subsequent systemic Value-at-Risk only captures the amount of 
systemic risk attributable to fire sales, but not to other shocks such as the decline in the sovereign debt 
value. However, the framework is sufficiently general to accommodate further sources of shocks.  
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event occurs, defined as the failure of a fraction of the banking system larger than 
5%.184 

Under the assumption that contagion takes place, the systemic Value-at-Risk and 
the probability that a systemic crisis occurs contract significantly in the first quarter of 
2014. This decrease is likely related to the announcement of the comprehensive 
assessment on 23 October 2013.185 After the announcement, banks increased their 
capital and reshuffled their security portfolios. This contributed to reducing systemic 
risk. 

Chart C.4 
Systemic risk: Q4 2013 – Q4 2014 

Probability of systemic event  
(percentages) 

 

Sources: ECB (SHS Group and SHS Sector), European Banking Authority, and ECB calculations. 
Note: The left-hand panel reports the 𝑆𝑦𝑠𝑆𝑆𝑃(1%) and the right-hand panel represents the probability of having a systemic event 𝑃𝑚(5%), both in the case where contagion occurs 
(blue dots) and in the case there is no contagion (yellow dots). 

Finally, the left-hand panels of Charts C.5 and C.6 report the networks of overlapping 
portfolios. Each node represents a bank in the sample. Two nodes are connected if 
there is an overlap in the banks’ tradable securities portfolios. Colour and size of the 
nodes highlight their centrality. By the same token, the colour and thickness of the 
links highlight how large the common exposure is. These charts illustrate how the 
topology of the banks’ network changed after the announcement of the 
comprehensive assessment. The right-hand panels of Charts C.5 and C.6 instead 
report the distributions of the number of bank defaults in the fourth quarter of 2013 
and in the fourth quarter of 2014, which also changed after the announcement of the 
comprehensive assessment. As a consequence, the systemic Value-at-Risk 

                                                                    
184  In this sample of 45 banks, 5% of failures correspond to roughly three banks going bust. With a larger 

sample this measure would produce a more realistic number of failures. However, since the article 
considers the 26 largest euro area banks and 19 bank aggregates by country, when more than three 
entities fail, this can certainly be associated with a systemic event. 

185  The impact of other events cannot be ruled out. For instance, the European Banking Authority (EBA) 
published the results of the transparency exercise in December 2013 and banks have also improved 
their capital levels in advance of changes to the regulatory framework. 
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computed at a confidence level of 1% decreased from 11% in 2013 Q4 to 4% in 
2014 Q4 (see the yellow areas). 

Chart C.5 
Systemic risk: Q4 2013 

Simulated distribution of number of bank defaults 
(x-axis: number of defaulting banks; percentages) 

 

Sources: ECB (SHS Group and SHS Sector), European Banking Authority, and ECB calculations. 
Notes: The left-hand panel reports the network of overlapping portfolios. Each node represents a bank in the sample or a banking system aggregate for a country. Two nodes are 
connected if there is an overlap in the banks’ tradable securities portfolios. Colour and size of the nodes highlight their centrality. Colour and thickness of the links highlight how large 
the common exposure is. The right-hand panel reports the simulated distribution of the number of bank defaults in 2013 Q4. The yellow areas show the 1% quantile of the 
distribution. 

Chart C.6 
Systemic risk: Q4 2014 

Simulated distribution of number of bank defaults 
(x-axis: number of defaulting banks; percentages) 

 

Sources: ECB (SHS Group and SHS Sector), European Banking Authority, and ECB calculations. 
Notes: The left-hand panel reports the network of overlapping portfolios. Each node represents a bank in the sample or a banking system aggregate for a country. Two nodes are 
connected if there is an overlap in the banks’ tradable securities portfolios. Colour and size of the nodes highlight their centrality. Colour and thickness of the links highlight how large 
the common exposure is. The right-hand panel reports the simulated distribution of the number of bank defaults in 2014 Q4. The yellow areas show the 1% quantile of the 
distribution. 
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Concluding remarks 

This special feature defines systemic risk as the simultaneous failure of a “large” 
number of banks. The notion of “large” is qualified by looking at disruptive financial 
crises in the United States from 1934 to 2014. In such crises more than 3% of banks 
defaulted at the same time. Exploiting this intuition, this article suggests a measure 
of systemic risk as the Value-at-Risk of a banking system, i.e. the percentage of 
banks going bust simultaneously over a given time horizon for a given confidence 
level. To estimate the systemic Value-at-Risk, the distribution of the number of bank 
failures is derived. In this framework, the mechanism generating fat tails in such a 
distribution and therefore leading to systemic risk is contagion. In particular, 
contagion materialises through fire sales and is affected by the topology of the 
network of banks’ common exposures. The framework is general enough to 
accommodate any contagion mechanism. 

This special feature applies this framework to data on the euro area banking system. 
After the announcement of the comprehensive assessment in October 2013 banks 
reshuffled their security portfolios, which resulted in a decline in the probability of a 
systemic event occurring. 

The framework proposed in this special feature has significant policy implications. In 
contrast to the monetary policy domain where extensive literature exists on the 
definition and measurement of price stability, no equivalent, quantifiable objective is 
available to macroprudential policy-makers. This special feature seeks to fill this gap. 
A clear definition and measurement of systemic risk can enhance the design of 
policies to contain it and contribute to the accountability of policy-makers. 

The framework can also be extended to identify systemically important assets and 
banks and to track their systemicness over time. It therefore allows policy-makers to 
take appropriate measures to reduce the likelihood that systemic risk materialises 
and target the main factors responsible for driving systemic events. 

 




