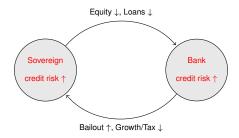
Macroprudential Regulation, Quantitative Easing, and Bank Lending

Andrea Orame¹, Rodney Ramcharan² and Roberto Robatto³

¹Bank of Italy, ²University of Southern California, ³University of Wisconsin-Madison

ECB - Frankfurt - October 2023


- Introduction
- Institutional setting
- Research design and estimates
- Proposals and final remarks

Main question

- Two important stabilization tools used since 2008-09
 - Macroprudential regulation to stabilize the banking system
 - Unconventional monetary policy
- Question: Do macroprudential tools mediate the transmission of (unconventional) monetary policy to bank lending to firms?
 - ECB's Public Sector Purchase Programme (QE)
 - Historical cost vs mark-to-market accounting (HCA/MMA) → prudential tool used for macroeconomic stabilization
 - Bank lending in Italy
- Answer: HCA weakens the response of bank lending to QE

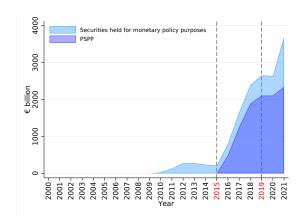
Sovereign-bank diabolic loop

- Historical cost accounting (HCA) and macroeconomic stability
 - Banks ordinarily hold government bonds (10-20% of total assets in Italy)
 - Sovereign-bank diabolic loop: concerns about joint sovereign-banking defaults [Brunnermeir et al. 2016]

HCA: policy intervention to contain the diabolic loop

Accounting regime and QE

- Impact of accounting regime on QE (bank lending) is uncertain
 - HCA, changes in yields not transmitted to regulatory capital
 - But HCA irrelevant if other channels are at work (e.g. liquidity, market value)
- Broader implications
 - We highlight a link between HCA and capital requirements
 - We propose alternative policies

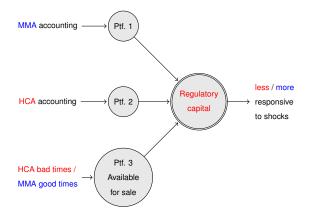

Introduction

Assets	Liabilities	
loans I_{t-1}	deposits d_{t-1}	
government debt $p g_0$	capital _t	

- Amount g₀ of government securities, evaluated at price p
 - $capital_t = l_{t-1} + p g_0 d_{t-1}$
 - If $p = p_t$: mark-to-market accounting (MMA)
 - If $p = p_0$: historical cost accounting (HCA)
- Risk-weighted capital requirement: $capital_t \ge \zeta l_t$
- Lending growth: $\frac{l_t-l_{t-1}}{l_{t-1}} \propto p g_0$
- Changes in yields affect lending only if $p = p_t$ (i.e., only if MMA)

- Introduction
- Institutional setting
- Research design and estimates
- Proposals and final remarks

QE: Public Sector Purchase Programme (PSPP)



- PSPP announced in January 2015 and September 2019
 - Government or international institutions in the euro area
 - Euro-denominated, residual maturity 2-30 years
 - Quality standard: fulfil ECB collateral eligibility
 - ≈ €50 billion per month

Sovereign bonds and banks' balance sheets

- Ordinarily, banks hold sovereign bonds in different sections of their balance sheets. For each bond:
 - trade it at will: trading book (HFT or FVPTL), portfolio 1
 - keep it until maturity: held to maturity (HTM or AC), portfolio 2
 - leave open the option to sell it: available for sale (AFS or FVOCI), portfolio 3
- Reclassification (essentially) not permitted
- Large amount of sovereign securites in portfolio 3 (AFS)

Accounting framework and regulatory capital

- From MMA to HCA when macroeconomic conditions deteriorate
 - 2010 → 2017: Historical Cost Accounting (HCA)
 - 2018 → 2019: Mark-to-Market Accounting (MMA)
 - 2020 → 2022: Historical Cost Accounting (HCA)

Accounting as a time-varying policy tool

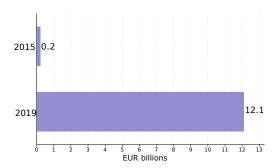
PSPP occurred under two different accounting regimes

- Introduction
- Institutional setting
- Research design and estimates
- Proposals and final remarks

$$\Delta \log \underbrace{L_{b,f,t}}_{\text{Loans firm }f} = \underbrace{\beta_t \times QE_b}_{\text{Exposure to PSPP}} + \underbrace{\gamma_t \times \mathbf{Y}_b + \delta Z_{b,t}}_{\text{Controls: Size, Reserves, ECB borrowing}} + \underbrace{\psi_{f,t} + \psi_b}_{\text{Fixed effects}} + \underbrace{\psi_{f,t} + \psi_b}_{\text{Exposure to PSPP}} + \underbrace{\psi_{f,t} +$$

- Fixed effects
 - − Firm-time $\psi_{f,t} \approx$ [Khwaja and Mian, 2008]
 - Bank ψ_b
- Set of controls
- QE_b
 - holdings of all PSPP-eligible securities/total assets
 - holdings of MMA PSPP-eligible securities only/total assets
- Estimates for 2015 and 2019

	Broad measure	Mark-to-market	Mark-to-market	Mark-to-market
	of exposure	exposure	exposure	exposure, dummy
[2014m7] × QE _b	-0.050	0.079	0.111	0.362
	[0.040]	[0.133]	[0.133]	[0.633]
$[2014m8] \times QE_b$	-0.156***	0.183	0.287	0.439
	[0.056]	[0.180]	[0.199]	[0.635]
$[2014m9] \times QE_b$	-0.003	0.278	0.287	0.836
	[0.055]	[0.234]	[0.228]	[0.582]
$[2014m10] \times QE_{b}$	-0.089	-0.105	-0.051	-0.910
	[0.055]	[0.243]	[0.249]	[0.938]
$[2014m11] \times QE_b$	-0.010	0.232	0.245	-0.363
	[0.063]	[0.284]	[0.276]	[0.925]
$[2015m1] \times QE_b$	-0.080	0.437**	0.498**	1.759**
	[0.054]	[0.182]	[0.196]	[0.733]
$[2015m2] \times QE_{h}$	-0.078**	0.139	0.192	0.022
	[0.039]	[0.187]	[0.196]	[0.703]
$[2015m3] \times QE_{b}$	0.009	0.058	0.055	0.368
	[0.055]	[0.171]	[0.162]	[0.558]
$[2015m4] \times QE_{b}$	-0.085*	0.084	0.139	0.022
	[0.045]	[0.172]	[0.181]	[0.569]
$[2015m5] \times QE_{b}$	-0.119**	0.039	0.114	-0.563
	[0.051]	[0.194]	[0.199]	[0.766]
$[2015m6] \times QE_b$	0.007	0.055	0.054	0.207
	[0.055]	[0.138]	[0.126]	[0.504]
HCA exposure	No	No	Yes	No
Observations	5,867,308	5,867,308	5,867,308	5,867,308
R-squared	0.394	0.394	0.394	0.394


2019 QE announcement

	Broad measure	Mark-to-market	Mark-to-market	Mark-to-market
	of exposure	exposure	exposure	exposure, dummy
[2019m3] × QE _b	-0.008	0.021	0.023	0.845
	[0.015]	[0.078]	[0.079]	[0.970]
$[2019m4] \times QE_b$	0.147***	0.106	0.070	-0.197
	[0.036]	[0.161]	[0.143]	[1.739]
$[2019m5] \times QE_b$	0.054**	0.084	0.072	0.833
	[0.025]	[0.068]	[0.060]	[0.689]
$[2019m6] \times QE_b$	0.004	0.042	0.042	1.349
	[0.024]	[0.125]	[0.130]	[1.554]
$[2019m7] \times QE_b$	0.115***	0.045	0.013	0.028
	[0.033]	[0.149]	[0.138]	[1.715]
$[2019m9] \times QE_b$	0.111**	0.244**	0.223**	2.610**
	[0.047]	[0.116]	[0.100]	[1.038]
$[2019m10] \times QE_{b}$	0.127**	-0.071	-0.102	1.136
	[0.061]	[0.152]	[0.160]	[1.501]
$[2019m11] \times QE_{b}$	-0.016	0.111	0.112	1.928
	[0.029]	[0.114]	[0.117]	[1.501]
$[2019m12] \times QE_{b}$	0.104**	0.339***	0.324***	3.367***
	[0.040]	[0.107]	[0.099]	[0.700]
$[2020m1] \times QE_{b}$	0.111***	0.071	0.047	-0.455
	[0.035]	[0.146]	[0.131]	[1.758]
$[2020m2] \times QE_b$	-0.024	0.031	0.030	-0.161
	[0.015]	[0.051]	[0.051]	[0.379]
HCA exposure	No	No	Yes	No
Observations	8,346,925	8,346,925	8,346,925	8,346,925
R-squared	0.370	0.370	0.370	0.370

- Lending by highly-exposed banks: +1.8% in 2015, +2.7% in 2019
- Very few banks exposed to the PSPP in 2015

	2015	2019
Mark-to-market	0.5%	6.0%

Back-of-the-envelope increase in lending

Additional results and robustness checks

- Long list of robustness checks: results are unchanged
 - Selection into exposure (no anticipation)
 - Controlling for banks' exposure to other policies
 - Exposure and other bank characteristics
 - Larger time window 23/32 mln obs in 2015/2019
 - Falsification test: exposure in December 2013 (12-month window) No effects
- Anatomy of supply
 - Lower interest rates
 - Extensive margin Increase in supply to new customers
 - Portfolio rebalancing only explains a fraction of the increase in lending
 - Capital-constrained banks increased lending more than non-capital constrained banks

- Introduction
- Institutional setting
- Research design and estimates
- 4 Proposals and final remarks

Back to the conceptual framework

• Recall:
$$capital_t^{HCA} = I_{t-1} + \underbrace{\frac{1}{1 + i_0 + s_0}}_{=p_0} g_0 - d_{t-1}$$

- If regulators want to allow monetary policy to pass through but shield capital from sovereign spread volatility
 - Hybrid rule: $p_{hybrid} = \frac{1}{1+i_t+s_0}$
- We show that HCA is equivalent to MMA with a specific time-varying capital requirement
 - E.g. Italy 2014: yields +3 pp → effective capital requirement -24%
 - MMA but with a specific time-varying capital requirement: capital_t $^{MMA} \geq \zeta_t^{\star} l_t$

Final remarks

- The PSPP led banks to increase their supply of credit to firms
- HCA, against sovereign-bank nexus, limits monetary policy
- Alternative rules can be implemented