

Households' energy demand The effects of carbon pricing in Italy

Ivan Faiella¹ Luciano Lavecchia¹

¹Climate change and sustainability hub (CSH), Banca d'Italia

20 September 2022

1 / 32

Faiella and Lavecchia (Banca d'Italia)

Households' energy demand

Motivation

- understanding energy demand and its drivers is crucial to govern net-zero transition and it is key in a present energy crisis;
- policies for a just transition should consider the distributive effects of carbon pricing;
- to be sustainable, policies to tackle persistent high energy prices should target the vulnerables.

Main results

- We develop a microsimulation model for households (HHs) energy demand in Italy, modelling the price elasticity for electricity, heating and private transport;
- elasticities are estimated for a combination of households characteristics and welfare (proxied by the equivalent expenditure);
- short run elasticities have the expected sign and are lower than long run elasticities;
- a carbon tax will significantly affects HHs, especially energy poor, abate up to 13% of total emissions and raise up to €15.5 billion;
- revenue-recycling to mitigate effects on more vulnerable households (and increase policy acceptance).

Data and identification strategy

Share of expenditure by energy use

Energy share by tenth of expenditure: 2008 vs 2018

Energy share by tenth of expenditure in 2018

tenth of equivalised expenditure

Faiella and Lavecchia (Banca d'Italia)

Households' energy demand

ALIA

Data

- \bullet Italian Household budgey survey (HBS) from Istat (1997-2018); \sim 16-20.000 obs per year;
- semi-annual retail electricity and natural gas prices from Eurostat;
- price components from ARERA;
- monthly gasoline and gasoil prices from MISE;
- HICP from Istat;
- wholesale electricity (PUN) and natural gas (PSV) prices and Brent from Bloomberg;

Identification strategy

- HBS is a cross section study, not a panel;
- quasi-panel (Deaton, 1985);
- strata: (9) household type (from lstat) × (4) quartile of the equivalent expenditure distribution = 36 strata;
- 36 strata x 22 years x 12 months = \sim 9.500 obs

Estimating energy demand

for each household i at time t

$$S_{i,t}^{E} = \frac{(E^{E}_{i,t} + E^{H}_{i,t} + E^{T}_{i,t})}{E_{xp_{i,t}}}$$

where

- E^E is the electricity expenditure;
- E^H is the heating expenditure;
- E^{T} is the private transportation expenditure;
- Exp is the total expenditure.

(1)

Estimating electricity (heating) demand

$$E_{i,t}^{E} = (P_{i,t}^{vE} Q_{i,t}^{E} + P_{i,t}^{fE})(1 + T_{t})$$

where

- $P_{i,t}^{vE}$ is the variable price per kWh (Gj for natural gas);
- $Q_{i,t}^{E}$ is the quantity of electricity demanded (unknown);
- $P_{i,t}^{fE}$ is a fixed price component;
- $(1 + T_t)$ are taxes (VAT).

Solving for $Q_{i,t}^E$, it follows

$$Q_{i,t}^{E} = \left(\frac{E_{i,t}^{E}}{1+T_{t}} - P_{i,t}^{fE}\right) * \frac{1}{\frac{1}{P_{i,t}^{vE}}}$$

All quantites are calibrated

Faiella and Lavecchia (Banca d'Italia)

Households' energy demand

(2)

(3)

Estimating private transport demand

- In Italy there are 3 fuels used for private transportation: gasoline, gasoil and LPG/CNG (~ 9%). Up to 2014, data on Gasoil and LPG/CNG expenditures are merged;
- In the bottom tenth less than two thirds of the households owns a cars while in the top tenth, 9 out of 10 households possess a private vehicle;
- retail price is competitive (more than 15k fuel pumps);

$$Q_{it}^{T} = \frac{E_{i,t}^{G}}{P_t^{G}} + \frac{E_{i,t}^{D}}{P_t^{D}}$$

where

E^G and P^G are gasoline expenditure and price;
E^D and P^D are diesel expenditure and price;

All quantites are calibrated

Faiella and Lavecchia (Banca d'Italia)

Households' energy demand

(4)

Estimating elasticity

We take average demand by *strata* and we estimate the (short and long run) price and income elasticities separately for three energy services z = E, H, T:

 $\log Q_{s,t}^{z} = \lambda_{s} \log Q_{s,t-1}^{z} + \beta_{s} \log P_{s,t}^{z} + \gamma_{s} \log E_{s,t} + w + s + t + t^{2} + \epsilon_{s,t}$ (5)

- a lagged term, $logQ_{s,t-1}^{z}$;
- the (real) price of the fuel $(log P_{s,t}^z)$;
- household' total expenditure (*logE_{s,t}*);
- a set of time trend (t and t^2) and seasonal dummies (w for autumn and winter months and s for summer).

Results: short and long run price elasticities

Short run price elasticities									
	LS	stratum-level LS	2SLS	long run					
Electricity	-0.36***	-0.29*	-0.40***	-1.17***					
Heating	-0.40***	-0.44**	-0.44***	-1.23***					
Transport	-0.17**	-0.45**	-0.66***	-1.46***					
* p < 0.05. *	** p < 0.01. *	*** $p < 0.001$							

Robustness checks:

- (robust) test for endogeneity (Wooldridge, 1995): strongly reject exogeneity only in Transport;
- test for weak instruments: Cragg-Donald/Stock and Yogo (2005) approach unfeasible; F-stat > 104 (Lee et al 2020) in all cases;
- Im-Pesaran-Shin test (2003) reject the null hypothesis of non-stationarity

Results

Short run price elasticity of electricity by stratum

Results

Short run price elasticity of heating by stratum

Results

Short run price elasticity of transport fuels by stratum

18 / 32

BANCA D'ITALIA

An application: a carbon tax in Italy

A carbon tax in Italy

- Italy belongs to the EU-ETS; currently, there is no national carbon pricing scheme;
- we choose to focus on 4 possible CTs: €50 (average of the EU-ETS in 2021), €100 (current EU-ETS value, COP21 compliant), €200 and €800 (peak values orderly and disorderly NGFS scenarios, v1.0);
- we use the specific carbon emission factors from official sources for each fuel to estimate the impact of each carbon tax on final energy prices;

carbon emission factors per fuel												
	ton CO2 per GJ											
	Electricity	Heating	Petrol	Diesel								
	0.078167	0.055820	0.067903	0.068301								

Effects of the CT on final energy prices

	Carbon taxes									
€ per ton of CO2	50	50 100 200								
Price variation										
Electricity	+6.3	+12.6	+25.2	+100.8						
Heating	+11.8	+23.6	+47.2	+188.7						
Transport fuels +7.9 +15.9 +31.8 +1										
% change compared with the baseline year (2018)										

Using 2018 prices as baseline, the introduction of a carbon tax of e50 per ton, is equivalent to add: $\in 0.014$ to each kWh of electricity; $\in 2.8$ to each GJ of gas and $\in 0.12$ to each litre of gasoline or gasoil.

Adjustment to our microsimulation model

Use price variations and previously estimated elasticities to get new demand:

$$\hat{Q}_{is|(\tau=CT)}^{z} = \hat{\beta}_{s} * \left[log P^{z} * (1 + \tau_{CT}^{z}) \right] + \hat{\epsilon_{s}}$$

where

- β_s are the estimated elasticity for each stratum s;
- is the implied price changes τ_{CT}^{z} ;
- $\hat{\epsilon}_i \sim \mathcal{N}(0, R \hat{M} S E_i)$

...and new, counterfactual, total expenditure:

$$Exp_{is|\tau=CT} = Exp_{is} + (E_{is|\tau=CT} - E_{is|\tau=0}).$$

(7

(6)

Results of the simulations (1 out of 2)

	n taxes								
€ per ton of CO2	50	100	200	800					
Energy demanded									
Electricity	-1.7	-3.4	-6.3	-19.6					
Heating	-5.1	-9.7	-17.7	-48.1					
Transport fuels	-2.6	-5.1	-9.5	-28.3					
Total energy demand	-4.2	-7.7	-13.8	-38.0					
Ex	penditu	re							
Electricity	+4.5	+8.9	+17.3	+61.6					
Heating	+6.6	+12.6	+22.9	+54.1					
Transport fuels	+5.1	+10.0	+19.2	+62.6					
Total energy expenditure	+5.4	+10.6	+20.0	+59.8					
Total expenditure	+0.5	+1.0	+2.0	+5.9					

Results of the simulations (2 out of 2)

	Carbon taxes								
€ per ton of CO2	50	100	200	800					
Effect on inflation (2018)*	+0.7	+1.4	+2.8	+11.3					
CO2 Emissions and revenues									
% var	-3.7	-7.0	-12.9	-36.4					
Emissions (Δ MtCO2e)	-4.8	-9.3	-17.0	-48.0					
Revenues (billion of €)	+4.2	+8.2	+15.5	+42.1					

* Additional percentage points to the Italian consumer price index (NIC).

(Total GHG emissions in 2018: 438 MtCO2eq - 112 from HHs)

Greater reduction in energy demand for poorer households

HHs energy demand under € 50 and € 100 CT: by exp. quintile Change compared with the case of no CT

1= poorer households; 5=richer households; 99= all households

BANCA D'ITALIA

25 / 32

Faiella and Lavecchia (Banca d'Italia)

Carbon tax would be regressive

Total household exp. under different CT: by exp. quintile Change compared with the case of no CT

ANCA D'ITALIA

Conclusions

Conclusions

- a carbon tax will significantly affects HHs, especially energy poor, abate up to 13% of total emissions and raise up to €15.5 billion;
- revenue-recycling to mitigate effects on more vulnerable households (and increase policy acceptance).
- an application of the model to evaluate the Italian Government' price interventions in 2021 suggest they were partially effective and regressive (Faiella and Lavecchia, 2022).
- an application to evaluate Italian HHs and firms financial vulnerability to transition risk (bottom-up climate stress test - Faiella et al., Journal of policy modeling, 2022)

Thank you for your attention! luciano.lavecchia@bancaditalia.it

Appendix

Energy demand as % change compared to the baseline

Electricity						He	ating		Transport fuels			
Tenth of equiv. €/ton CO2					€/ton CO2				€/ton CO2			
expenditure	50	100	200	800	50	100	200	800	50	100	200	800
1	-2.6	-5.1	-9.6	-29.6	-5.2	-9.8	-17.9	-48.2	-4.0	-7.7	-14.3	-42.1
2	-2.6	-5.0	-9.4	-28.7	-5.2	-9.8	-17.8	-48.1	-4.0	-7.7	-14.3	-42.4
3	-2.1	-4.2	-7.9	-24.2	-5.0	-9.5	-17.4	-46.9	-3.5	-6.7	-12.5	-36.8
4	-1.6	-3.2	-6.0	-18.6	-5.0	-9.5	-17.4	-47.3	-2.9	-5.6	-10.5	-31.0
5	-1.6	-3.1	-5.9	-18.4	-5.0	-9.5	-17.2	-46.5	-3.0	-5.9	-10.9	-32.6
6	-1.1	-2.2	-4.2	-13.0	-5.5	-10.4	-19.0	-51.4	-1.6	-3.1	-5.9	-17.7
7	-1.1	-2.2	-4.2	-13.0	-5.5	-10.5	-19.0	-51.5	-1.7	-3.3	-6.2	-18.6
8	-1.4	-2.7	-5.1	-15.8	-5.1	-9.8	-17.7	-48.0	-2.3	-4.5	-8.5	-25.0
9	-1.7	-3.3	-6.2	-19.2	-4.9	-9.4	-17.0	-46.2	-2.7	-5.3	-9.9	-29.6
10	-1.5	-3.0	-5.7	-18.0	-5.0	-9.5	-17.2	-47.1	-2.6	-5.0	-9.4	-28.0
Total	-1.7	-3.4	-6.3	-19.6	-5.1	-9.7	-17.7	-48.1	-2.6	-5.1	-9.5	-28.3

Appendix

Expenditure as % change compared to the baseline

		Elec	tricity			Heating				Transport fuels			
Tenth of equiv.		€/ton CO2				€/ton CO2			€/ton CO2				
expenditure	50	100	200	800	50	100	200	800	50	100	200	800	
1	3.6	6.9	13.2	41.6	6.5	12.4	22.5	53.2	3.6	7.0	12.9	31.4	
2	3.6	7.0	13.5	43.4	6.6	12.6	23.0	54.7	3.6	7.0	12.9	30.7	
3	4.1	8.0	15.4	52.7	6.7	12.8	23.3	56.9	4.2	8.1	15.3	43.2	
4	4.6	9.1	17.9	64.3	6.8	12.9	23.4	56.1	4.8	9.4	18.0	56.6	
5	4.7	9.2	18.0	64.9	6.8	13.0	23.8	59.4	4.6	9.1	17.3	52.6	
6	5.1	10.1	20.0	74.8	6.3	11.9	21.3	45.2	6.2	12.3	24.0	87.0	
7	5.1	10.1	19.9	74.5	6.2	11.8	21.2	44.5	6.1	12.1	23.6	84.6	
8	4.8	9.6	18.8	69.2	6.6	12.6	23.1	55.4	5.4	10.7	20.7	70.4	
9	4.5	9.0	17.5	62.7	6.8	13.0	23.9	59.1	5.0	9.8	18.8	60.1	
10	4.7	9.2	18.0	64.6	6.7	12.7	23.3	56.0	5.1	10.1	19.4	63.5	
Total	4.5	8.9	17.3	61.6	6.6	12.6	22.9	54.1	5.1	10.0	19.2	62.6	

