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Not surprising that inflation rose in 2021
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Harder: is it persistent or transitory?
• In the long run this is about expectations anchor and monetary policy

• There are temporary headwinds and tailwinds, but inflation is a monetary phenomenon 
• In a flexible-price world (and so in long run), monetary policy is all about guiding expectations.

• The two are interconnected
• Asking people what they think inflation will. be in 5 years is asking them: do you trust the central bank?
• Measures of credibility

• Answer has to be probabilistic
• Virtue of central bank independence and inflation targeting is to reduce inflation risk premium
• Beyond average forecasts upside risk is what you would worry about
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In this talk I will describe 2 (3) papers
• With Jens Hilscher and Alon Raviv

• “How Likely is an Inflation Disaster?” (2021)

• On surveys of expectations:

• “Losing the Inflation Anchor” (2021) 

• (and “The People versus the Markets: A 
Parsimonious Model of Inflation 
Expectations” (2020)
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1. What do the market prices say?
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Tail counterparts to this figure
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• What is the risk- adjusted probability 
of an inflation disaster between today 
and ten years from now? 

• What is the risk-adjusted probability 
of an inflation disaster between 5 
years form now and 10 years from 
now?

•  What is the actual probability of an 
inflation disaster between 5 years 
form now and 10 years from now? 

<latexit sha1_base64="LrfMD2kh4q98M2VnzT53jUFWOSQ="></latexit>

�h = Prob(⇡t,T > (T � t)⇡̄)

�d = Prob(⇡t,T < (T � t)⇡)

Source: Hilscher, Raviv Reis (2021)



Obvious candidate: inflation options
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But data is misleading, does not match
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Three adjustments
• Probabilities that mean something
• From 5y or 10y to instead 5y5y
• From risk-neutral (q) to actual probabilities (p)

then, combining all the steps so far, we get the following result:

Proposition 1. The probabilities of disaster high-inflation and deflation are, respectively:

Fh = Â
pt,T>(T�t)p̄

p(pt,T) and Fd = Â
pt,T<(T�t)p

p(pt,T) (4)

The actual probabilities satisfy:

p(pt,T) = n(p0,T)| {z }
Options

⇥
✓

ep0,T R0,t
I0,T

◆

| {z }
Real

⇥
 

Âp0,t p(p0,T + pt,T|p0,t)p(p0,t)

p(p0,T)

!

| {z }
Horizon

⇥
✓

1
R0,Tm(p0,T)

◆

| {z }
Risk

(5)

Section 3 shows that the first term on the right-hand side of equation (5), labelled
Options matches what is conventionally measured from option prices. Section 4 then dis-
cusses the size and how to measure the term in the brackets labelled Real. Section 5 brings
more options data and estimation procedure to be able to measure the conditional distri-
butions in the Horizon term. Finally, section 6 discusses how to measure or approximate
the risk adjustment term. All combined, the option data must be subject to three adjust-
ments to provide the correct answer.

3 Deflated “probabilities” and options data

There is an active market for US inflation options, where both call and put options for
average inflation between the present and up to 10 years are traded for strike prices be-
tween -2% to 6% with 0.5% jumps. The typical call security with a strike price k pays at
the future date the difference between the gross inflation rate (ep) until that date and the
strike price if this is positive, or zero otherwise. The price of that option in the present is
a(k).

The no-arbitrage pricing condition for this security is:2

a(k) = Â
p

✓
p(p)m(p)max

⇢
ep � k

ep , 0
�◆

(6)

Following the seminal contribution of ?, it is convenient to approximate this by assuming
a continuum of inflation states, so that using the definition of Arrow-Debreu prices to

2Note that the payoff of these securities only depends on inflation, not on the entire set of states p̃(s)
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Source: Hilscher, Raviv, Reis (2021)



First issue: meaningful risk-neutral probabilities
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• 2 periods, 3 states case, 
option price on disaster :

• Usually reported (MinnFed)

• But AD price probability is:

• Adjustment factor
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a(1) = pndmde
�⇡d
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nd(1) = a(1)I1

<latexit sha1_base64="c8dnYEY0g6lYEqWuXlWH5okYjrg="></latexit>

qd(1) = pndmdR1
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First issue: meaningful risk-neutral probabilities
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• Pricing condition

• Can measure

• But actually

Source: Hilscher, Raviv, Reis (2021)

Figure 3: Inflation disaster probabilities: risk-adjusted and including near future (q(p0,T))

United States Eurozone
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same time, there is also a large increase in the thickness of the left tail. Combines, the
probability of deflation in the EZ rose from XX% to XX%.

Figure 3 plots the time series of the probabilities of an inflation disaster, that is mea-
sures of q(p0,T). For both applications, we define a high-inflation disaster as inflation
being on average above p̄ = 4%, and a deflation disaster as inflation on average below
p = 0%. Taking 2% as the average inflation target, over 5 years, this is a deviation of 10%
from it, and over 10 years, a deviation of 20%. In 150 years of US history, this happened
three times, one in each World War, and again during the 1970s, all on the side of too
much inflation. In the appendix, we provide versions of all estimates us

During the last decade, the market-perceived chances that this would happen again in
the United States went through three distinct phases. After the great financial crisis and
until 2013, both high-inflation and deflation disasters were seen as somewhat likely. XXX.
Then, between 2014 and early 2020 the probabilities of a disaster were very small, both in
the shorter or longer horizons. Then after August of 2020, the probability of a deflation
disaster has stayed small, but the probability of a high-inflation disaster has been steadily
rising.

Instead, in the EZ, we see that XXX.
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Where the probabilities satisfy:

p(pt,T) = n(p0,T)| {z }
Options

⇥
⇣

e(p0,T�pe
0,T)T

⌘

| {z }
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⇥
⇣
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⌘

| {z }
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(7)

⇥ Â
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2

4

0

@ Â
...=pt,T(T�t)

q(pt,t+1, ..., pT�1,T|p0,t)

1

A q(p0,t)
q(p0,T)

3

5

| {z }
Horizon

(8)

While the proposition characterizes the adjustment factors in some generality, im-
plementing them requires developing techniques (and making assumptions) to estimate
them. We turn to this next.

3 Options data and risk-neutral probabilities

There is an active market for US inflation options, where both call and put options for
average inflation between the present and up to 15 years away are traded for strike prices
between -2% to 6% with 0.5% jumps. The typical call security with a strike price k pays at
the future date the difference between the gross inflation rate (ep) until that date and the
strike price k if this is positive, or zero otherwise. The price of that option in the present
is a(k).

The no-arbitrage pricing condition for this security is:3

a(k) = Â
p

✓
p(p)m(p)max

⇢
ep � k

ep , 0
�◆

(9)

Following the seminal contribution of ?, it is convenient to approximate this by assuming
a continuum of inflation states. Further using the definition of the Arrow-Debreu prices
in equation (1):

a(k) =
Z •

k

✓
ep � k

ep

◆
b(p)dp (10)

3Note that the payoff of these securities only depends on inflation, not on the entire set of states p̃(s)
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3.1 Recovering nominal probabilities

Recalling the definition of n(p) we can re-write the no-arbitrage condition as:

eia(k) =
Z •

k
(ep � k)n(p)dp (11)

Differentiating this expression with respect to k and using the definition of a distribution
function N(p) gives a simple formula to build this distribution:

N(log(k)) = 1 + Ia0(k) (12)

The right-hand side can be easily measured for different strike prices: it is how sensitive
the price of the option is to the strike price. Since these strike prices are themselves infla-
tion measures, one can easily build the whole distribution for different k = log(p), which
is what is usually reported in financial media.

At the same time, from equation (2), for n(p) = p(p) only if m(p)erep�pe
= 1. This

requires both risk neutrality, so that m(p) is constant, and so m(p)er = 1, as well as
ppe for every realization of p. Yet, this is only the case if there is no uncertainty about
inflation. But in that world, these probabilities carry little, if any, useful information; all
probabilities, including the disaster probabilities in the proposition, are either trivially 1
or 0. To conclude, the nominal probabilities that are usually reported are not a useful
proxy for the actual probabilities.

3.2 Risk-adjusted probabilities

Instead, the probabilities q(.) coincide with the actual probabilities p(.) if people are neu-
tral with respect to inflation risk, or if the classical dichotomy holds, so inflation is un-
correlated with marginal utility. For a long horizon, as is our focus, this is not a terrible
assumption, as it corresponds to believing in a long-run vertical Phillips curve, which is
true in the majority of models used for monetary policy. One could obtain them from the
data on n(.) using equation (2). Alternatively, going back to (10), take derivatives with
respect to k to give:

era0(k) = �
Z •

k
e�pq(p)dp (13)
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marginal utility of consumption. These securities do not exist and so their prices cannot
be easily observed in the data. However, consider a related set of inflation securities that
pay off one unit of the consumption good if inflation is p at that future date. We assume
throughout that there is no arbitrage in trading inflation risk. Inflation is an aggregate
variable, on which there is little inside information by any particular investor, and which
is monitored by some of the largest passive investors, as well as by many speculators. By
no-arbitrage, it must be that their price is b(p) = Âs:p(s)=p b̃(s). But then, it follows that

b(p) = p(p)m(p) (1)

where m(p) = Âs:p(s)=p p(s)m(s)/p(p): the average marginal utility across all the states
of the world where inflation is the same. The average arises because there may be states
s0 and s00 such that p(s0) = p(s00), it may be that m(s0) 6= m(s00). As a result, m(p) will
vary only with inflation, or carry inflation risk, while averaging (or sweeping over) over
all other sources of risk in the economy. Over the last twenty years, the US economy has
gone through booms and busts, but inflation has been approximately unchanged.

Risk-neutral probabilities: Consider an alternative security that pays one unit of con-
sumption, no matter what the state of the world is. The inverse of the price of this security
is er, where r is the net interest rate. Since this security has an identical payoff as buying
one inflation security for each possible value of inflation, it follows that by no-arbitrage:
e�r = Âp b(p) = Âp p(p)m(p). Therefore, e�r is the expected marginal utility of con-
sumption. Because prices are non-negative, then q(p) = b(p)er is non-negative and adds
up to 1. It is called the risk-adjusted probability of this inflation rate. A different secu-
rity, that matches what is traded in financial markets, pays not one unit of consumption,
but rather one nominal unit at the future state-date. Again, by no-arbitrage, its price is
b(p)e�p. If inflation is high, this is lower than that of b(p), because the nominal unit
delivered by this security is worth less in real terms than that of the inflation security. The
net nominal interest rate it is likewise defined as the inverse of the price of a security that
delivers one nominal unit for sure next period e�i = Âp b(p)e�p. Combining these two,
one can define the “nominal probability” n(p) = b(p)e�p�i, which is itself non-negative
and adds up to 1. Finally, let pe = i � r, be expected inflation. It immediately follows
that:

q(p) = n(p)ep�pe
(2)

Time and horizons: Date 0 is the present, at which all probabilities will be calculated
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Figure 2: Nominal and risk-adjusted distributions of inflation, 10-year horizon

United States, 2020-21 Eurozone, 2013-14
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Taking another round of derivatives with respect to k gives:

q(log k) = erka00(k) (14)

Since the right-hand side can be measured, this provides a way to build the Arrow-
Debreu prices directly from the option prices.

3.3 Data and estimates

We use data from January 2011 to May of 2021 from Thomson-Reuters. While option
prices are available daily, sometimes the data quality is low. To be conservative in its use,
we pool the daily observations to construct a monthly series. The appendix describes
how we cleaned the data and performed this aggregation.

The left panel of figure 2 plots the US risk-adjusted and nominal probabilities at two
dates in time, in January of 2020 and in May of 2021, both for a 10-year horizon. During
these XX months, the distribution shifted to the right modestly. Expected inflation in-
creased from XX to XX only. Yet, as the figure shows that this hides a significant increase
in the right tail of the distribution after the pandemic. The risk-adjusted probability that
inflation would be higher than 4% on average over the next decade increased from XX to
XX, a rise that was partially hidden if just looking at nominal probabilities.

The bottom panels shows the EZ distribution between XX 2013 and XX of 2014. The
fall in expected inflation that justified the launch of quantitative easing is clear. At the
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Second issue: horizon
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• 10y probability is almost 
always above 5y

• Inflation is sluggish, takes 
time to build up, if 2 
periods of 5 years, 5y5y 
will be higher than 5y and 
smaller than 10y-5y
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Second issue: horizon

12

• Local model plus disasters in Markov chain form

• Fit to distributions at 5y, 10y, as well as the one-year distributions at 5-9 years.

The A matrix looks like:
2

66666666664

1� 2⇡L1 � 2⇡L2 � 2⇡L3 ⇡L1 ⇡L1 ⇡L2 ⇡L2 ⇡L3 ⇡L3 0
⇡nL1 + ⇡nn ⇡m1 ⇡mr 0 0 0 0 ⇡nH2

⇡nL1 ⇡nn ⇡m1 ⇡mr 0 0 0 ⇡nH2

⇡nL1 0 ⇡nn ⇡n ⇡nn 0 0 ⇡nH1

⇡nL1 0 0 ⇡nn ⇡n ⇡nn 0 ⇡nH1

0 0 0 0 ⇡mr ⇡m2 ⇡nn ⇡nH1

0 0 0 0 0 ⇡mr ⇡m2 ⇡nH1 + ⇡nn

0 0 0 ⇡H2 ⇡H2 ⇡H1 ⇡H1 1� 2⇡H1 � 2⇡H2

3

77777777775

,

where ⇡n = 1� 2⇡nn � ⇡nL1 � ⇡nH1, ⇡m1 = 1� ⇡nL1 � ⇡nH2 � ⇡nn � ⇡mr and ⇡m2 = 1� ⇡nH1 �
⇡nn � ⇡mr.

Vector of parameters: ⇡ =
⇥
⇡L1 ⇡L2 ⇡L3 ⇡H1 ⇡H2 ⇡nL1 ⇡nH1 ⇡nH2 ⇡nn ⇡mr

⇤0
.

2.4 Model (13)

In the 13th case we simplify model 6 and impose ⇡L1 = ⇡L2, ⇡H1 = ⇡H2 and ⇡mr1 = ⇡mr2.
The A matrix looks like:

2

66666666664

1� 5⇡L ⇡L ⇡L ⇡L ⇡L ⇡L 0 0
⇡nL + ⇡nn 1� ⇡nL � ⇡nn � ⇡mr ⇡mr 0 0 0 0 0

⇡nL ⇡nn ⇡m ⇡mr 0 0 0 ⇡nH

⇡nL 0 ⇡nn ⇡n ⇡nn 0 0 ⇡nH

⇡nL 0 0 ⇡nn ⇡n ⇡nn 0 ⇡nH

⇡nL 0 0 0 ⇡mr ⇡m ⇡nn ⇡nH

0 0 0 0 0 ⇡mr 1� ⇡nH � ⇡nn � ⇡mr ⇡nH + ⇡nn

0 0 ⇡H ⇡H ⇡H ⇡H ⇡H 1� 5⇡H

3

77777777775

,

where ⇡n = 1� 2⇡nn � ⇡nL � ⇡nH , and ⇡m = 1� ⇡nH � ⇡nn � ⇡mr � ⇡nL.
Vector of parameters: ⇡ =

⇥
⇡L ⇡H ⇡nL ⇡nH ⇡nn ⇡mr

⇤0
.

3

Source: Hilscher, Raviv Reis (2021)



Third issue: risk aversion

13 Source: Hilscher, Raviv Reis (2021)

• Use Jorda-Schularick-
Taylor and Barro 
datasets

• Within windows of 
consumption disaster 
see if inflation disaster 
as well (relative to 
target inflation)

• varying window length 
and size measurement



Third issue: risk aversion
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R.J. Barro and G.Y. Liao Journal of Financial Economics 139 (2021) 750–769 
( Gabaix et al., 2003 ; Plerou et al., 2004 ), chief executive 
officer compensation ( Gabaix and Landier, 2008 ), and firm 
size ( Luttmer, 2007 ). The power-law distribution has been 
given many names, including heavy-tail distribution, Pareto 
distribution, Zipfian distribution, and fractal distribution. 

The parameter z 0 > 1 in Eq. (13) is the threshold be- 
yond which the power-law density applies. For example, 
in Barro and Ursúa (2012) , the floor disaster size of b 0 = 
0 . 095 corresponds to z 0 = 1 . 105 . We treat z 0 as a constant. 
The condition that f ( z ) integrates to one from z 0 to infinity 
implies A = αz α0 . Therefore, the power-law density function 
in Eq. (13) becomes 
f ( z ) = αz α0 · z −( 1+ α) , z ≥ z 0 > 1 . (14) 

The key parameter in the power-law distribution is the 
Pareto tail exponent, α, which governs the thickness of the 
right tail. A smaller α implies a thicker tail. 

The probability of drawing a transformed disaster size 
above z is given by 
1 − F ( z ) = ( z 

z 0 ) −α . (15) 
Thus, the probability of seeing an extremely large trans- 

formed disaster size, z (expressed as a ratio to the thresh- 
old, z 0 ), declines with z in accordance with the tail expo- 
nent α > 0. 

One issue about the power-law density is that some 
moments related to the transformed disaster size, z , could 
be unbounded. For example, in Eq. (7) , the risk-free rate 
depends inversely on the term E ( 1 − b ) −γ . Heuristically (or 
exactly with time-separable power utility), we can think of 
this term as representing the expected marginal utility of 
consumption in a disaster state relative to that in a nor- 
mal state. When z ≡ 1 / ( 1 − b ) is distributed according to 
f ( z ) from Eq. (14) , we can compute 
E ( 1 − b ) −γ = E ( z γ ) = ( α

α − γ

)
· z γ0 if α > γ . (16) 

The term on the right side of Eq. (15) is larger when 
γ is larger (more risk aversion) or α is smaller (fatter tail 
for disasters). But, if α ≤ γ , the tail is fat enough, relative 
to the degree of risk aversion, so that the term blows up. 
In this case, r f equals minus infinity in Eq. (7) , and the eq- 
uity premium is infinity in Eq. (9) . In the data, the risk- 
free rate is not minus infinity and the equity premium 
is not infinity. Therefore, the empirical application of the 
power-law density in Barro and Jin (2011) confined γ to a 
range that avoided unbounded outcomes, given the value 
of α estimated from the observed distribution of disaster 
sizes. That is, the unknown γ had to satisfy γ < α for the 
model to have any chance to accord with observed average 
rates of return. 5 This condition, which we assume holds, 
enters into our analysis of far out-of-the-money put op- 
tions prices. 

5 With constant absolute risk aversion and a power-law distribution of 
disaster sizes, the relevant term has to blow up. The natural complement 
to constant absolute risk aversion is an exponential distribution of disas- 
ter sizes. In this case, the relevant term is bounded if the parameter in 
the exponential distribution is larger than the coefficient of absolute risk 
aversion. With an exponential size distribution and constant relative risk 
aversion, the relevant term is always finite. 

Barro and Jin (2011 , Table 1 ) estimated the power-law 
tail parameter, α, in single power-law specifications (and 
also considered double power laws). The estimation was 
based on macroeconomic disaster events of size 10% or 
more computed from the long history for many countries 
of per capita personal consumer expenditure (the available 
proxy for consumption, C ) and per capita GDP, Y . The esti- 
mated values of α in the single power laws were 6.3, with 
a 95% confidence interval of (5.0, 8.1), for C and 6.9, with 
a 95% confidence interval of (5.6, 8.5), for Y . 6 Thus, the ob- 
served macroeconomic disaster sizes suggest a range for α
of roughly 5–8. 
3.3. Options pricing formula 

To get the formula for #, the relative options price, we 
use the first-order condition from Eqs. (5) and (6) , with the 
gross rate of return, R t+1 , corresponding to the return R o t+1 
on put options in Eq. (12) . We can rewrite this first-order 
condition as 
1 + ˆ ρ = ( 1 + g ) −γ · E t (z γ R o t+1 ), (17) 
where z ≡ 1 / ( 1 − b ) is the transformed disaster size and 
1 + ˆ ρ is an overall discount term, given from Eqs. (5) and 
(6) (when the diffusion term is negligible) by 
1 + ̂  ρ= 1 + ρ−( γ −θ ) g + p · (γ − θ

γ − 1 
)

·
[
E ( 1 − b ) 1 −γ −1 ]. 

(18) 
We can evaluate the right-hand side of Eq. (17) using 

the density f ( z ) from Eq. (14) along with the expression for 
R o t+1 from Eq. (12) . The result involves integration over the 
interval z ≥ 1+ g 

ε , where, conditional on having one disaster, 
the disaster size is large enough to get the put option into 
the money. The formula depends also on the probability, p , 
of having a disaster: 
(
1 + ˆ ρ

)
( 1 + g ) γ

= p 
#

·
∫ ∞ 
( 1+ g 

ε ) 
{ 

z γ ·
[ 
ε − 1 + g 

z 
] 

· αz α0 z −( 1+ α) } 
dz. (19) 

Evaluating the integral (assuming γ < α and ε < 
[ 1 + g ] / z 0 ) leads to a closed-form formula for the relative 
options price: 7 
# = αz α0 (

1 + ˆ ρ + αg ) · p ε 1+ α−γ

( α − γ ) ( 1 + α − γ ) . (20) 
3.4. Maturity of the option 

Eq. (20) applies when the maturity of the put option is 
one period. We now take account of the maturity of the 
option. In continuous time, the parameter p , measured per 

6 Barro and Jin (2011 , Table 1 ) find that the data could fit better with a 
double power law. In these specifications, with a threshold of z 0 = 1 . 105 , 
the tail parameter, α, was smaller in the part of the distribution with the 
largest disasters than in the part with the smaller disasters. The cutoff

value for the two parts was at a value of z around 1.4. 
7 We also used the approximation ( 1 + ˆ ρ) ( 1 + g ) α ≈ 1 + ˆ ρ + αg. 
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( Gabaix et al., 2003 ; Plerou et al., 2004 ), chief executive 
officer compensation ( Gabaix and Landier, 2008 ), and firm 
size ( Luttmer, 2007 ). The power-law distribution has been 
given many names, including heavy-tail distribution, Pareto 
distribution, Zipfian distribution, and fractal distribution. 

The parameter z 0 > 1 in Eq. (13) is the threshold be- 
yond which the power-law density applies. For example, 
in Barro and Ursúa (2012) , the floor disaster size of b 0 = 
0 . 095 corresponds to z 0 = 1 . 105 . We treat z 0 as a constant. 
The condition that f ( z ) integrates to one from z 0 to infinity 
implies A = αz α0 . Therefore, the power-law density function 
in Eq. (13) becomes 
f ( z ) = αz α0 · z −( 1+ α) , z ≥ z 0 > 1 . (14) 

The key parameter in the power-law distribution is the 
Pareto tail exponent, α, which governs the thickness of the 
right tail. A smaller α implies a thicker tail. 

The probability of drawing a transformed disaster size 
above z is given by 
1 − F ( z ) = ( z 

z 0 ) −α . (15) 
Thus, the probability of seeing an extremely large trans- 

formed disaster size, z (expressed as a ratio to the thresh- 
old, z 0 ), declines with z in accordance with the tail expo- 
nent α > 0. 

One issue about the power-law density is that some 
moments related to the transformed disaster size, z , could 
be unbounded. For example, in Eq. (7) , the risk-free rate 
depends inversely on the term E ( 1 − b ) −γ . Heuristically (or 
exactly with time-separable power utility), we can think of 
this term as representing the expected marginal utility of 
consumption in a disaster state relative to that in a nor- 
mal state. When z ≡ 1 / ( 1 − b ) is distributed according to 
f ( z ) from Eq. (14) , we can compute 
E ( 1 − b ) −γ = E ( z γ ) = ( α

α − γ

)
· z γ0 if α > γ . (16) 

The term on the right side of Eq. (15) is larger when 
γ is larger (more risk aversion) or α is smaller (fatter tail 
for disasters). But, if α ≤ γ , the tail is fat enough, relative 
to the degree of risk aversion, so that the term blows up. 
In this case, r f equals minus infinity in Eq. (7) , and the eq- 
uity premium is infinity in Eq. (9) . In the data, the risk- 
free rate is not minus infinity and the equity premium 
is not infinity. Therefore, the empirical application of the 
power-law density in Barro and Jin (2011) confined γ to a 
range that avoided unbounded outcomes, given the value 
of α estimated from the observed distribution of disaster 
sizes. That is, the unknown γ had to satisfy γ < α for the 
model to have any chance to accord with observed average 
rates of return. 5 This condition, which we assume holds, 
enters into our analysis of far out-of-the-money put op- 
tions prices. 

5 With constant absolute risk aversion and a power-law distribution of 
disaster sizes, the relevant term has to blow up. The natural complement 
to constant absolute risk aversion is an exponential distribution of disas- 
ter sizes. In this case, the relevant term is bounded if the parameter in 
the exponential distribution is larger than the coefficient of absolute risk 
aversion. With an exponential size distribution and constant relative risk 
aversion, the relevant term is always finite. 

Barro and Jin (2011 , Table 1 ) estimated the power-law 
tail parameter, α, in single power-law specifications (and 
also considered double power laws). The estimation was 
based on macroeconomic disaster events of size 10% or 
more computed from the long history for many countries 
of per capita personal consumer expenditure (the available 
proxy for consumption, C ) and per capita GDP, Y . The esti- 
mated values of α in the single power laws were 6.3, with 
a 95% confidence interval of (5.0, 8.1), for C and 6.9, with 
a 95% confidence interval of (5.6, 8.5), for Y . 6 Thus, the ob- 
served macroeconomic disaster sizes suggest a range for α
of roughly 5–8. 
3.3. Options pricing formula 

To get the formula for #, the relative options price, we 
use the first-order condition from Eqs. (5) and (6) , with the 
gross rate of return, R t+1 , corresponding to the return R o t+1 
on put options in Eq. (12) . We can rewrite this first-order 
condition as 
1 + ˆ ρ = ( 1 + g ) −γ · E t (z γ R o t+1 ), (17) 
where z ≡ 1 / ( 1 − b ) is the transformed disaster size and 
1 + ˆ ρ is an overall discount term, given from Eqs. (5) and 
(6) (when the diffusion term is negligible) by 
1 + ̂  ρ= 1 + ρ−( γ −θ ) g + p · (γ − θ

γ − 1 
)

·
[
E ( 1 − b ) 1 −γ −1 ]. 

(18) 
We can evaluate the right-hand side of Eq. (17) using 

the density f ( z ) from Eq. (14) along with the expression for 
R o t+1 from Eq. (12) . The result involves integration over the 
interval z ≥ 1+ g 

ε , where, conditional on having one disaster, 
the disaster size is large enough to get the put option into 
the money. The formula depends also on the probability, p , 
of having a disaster: 
(
1 + ˆ ρ

)
( 1 + g ) γ

= p 
#

·
∫ ∞ 
( 1+ g 

ε ) 
{ 

z γ ·
[ 
ε − 1 + g 

z 
] 

· αz α0 z −( 1+ α) } 
dz. (19) 

Evaluating the integral (assuming γ < α and ε < 
[ 1 + g ] / z 0 ) leads to a closed-form formula for the relative 
options price: 7 
# = αz α0 (

1 + ˆ ρ + αg ) · p ε 1+ α−γ

( α − γ ) ( 1 + α − γ ) . (20) 
3.4. Maturity of the option 

Eq. (20) applies when the maturity of the put option is 
one period. We now take account of the maturity of the 
option. In continuous time, the parameter p , measured per 

6 Barro and Jin (2011 , Table 1 ) find that the data could fit better with a 
double power law. In these specifications, with a threshold of z 0 = 1 . 105 , 
the tail parameter, α, was smaller in the part of the distribution with the 
largest disasters than in the part with the smaller disasters. The cutoff

value for the two parts was at a value of z around 1.4. 
7 We also used the approximation ( 1 + ˆ ρ) ( 1 + g ) α ≈ 1 + ˆ ρ + αg. 
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one, is roughly constant, and depends on the difference be- 
tween the power-law tail parameter, α, and the coefficient 
of relative risk aversion, γ . We show that the theoreti- 
cal formula conforms with data from 1983 to 2018 on far 
out-of-the-money put options on the US stock market and 
analogous indices over shorter periods for other countries. 

The options pricing formula involves a term that is pro- 
portional to the disaster probability, p . This term depends 
on three other parameters: γ , α, and the threshold dis- 
aster size, z 0 . If these three parameters are fixed, we can 
use estimated time fixed effects to gage the time variations 
in p . The options pricing formula depends also on poten- 
tial changes in p . Sharp increases in p can get out-of-the- 
money put options into the money without the realization 
of a disaster. We find empirically that the probability, q , of 
a large upward movement in p can be treated as roughly 
constant. 

Relative to the standard approach in the literature 
that assumes a risk-neutral distribution, our approach 
starts with the preferences of a representative investor. 
This preference-based approach intuitively connects option 
pricing with consumption and growth. The two approaches 
are, in fact, similar because our disaster-probability time 
series is jointly estimated with the degree of risk aversion, 
γ , and the power-law parameter, α. Even though time vari- 
ations in γ and α cannot be pinned down separately, the 
unconditional estimates of γ and α, derived from the es- 
timated elasticity of options price with respect to exercise 
price, accords with estimates from previous estimates us- 
ing macro variables. 

This market-based assessment of objective disaster 
probability provides a valuable indicator of tail risks in the 
aggregate economy. The disaster probability p is highly cor- 
related across countries and varies significantly over time. 
We use p to forecast growth vulnerabilities, defined as 
gross domestic product (GDP) growth at the lowest decile. 
An increase in disaster probability is associated with a de- 
cline in the conditional mean of growth; that is, down- 
side risks to growth rise with disaster probability while 
upside risks are independent of disaster probability. More- 
over, disaster probability as registered by the financial mar- 
kets contains different information about tail risks in the 
economy when compared with political uncertainty. 

Our model belongs to the class of jump-diffusion mod- 
els. Options pricing within this general class goes back to 
Merton (1976) and Cox and Ross (1976) . More recently, 
empirical estimation and validation of jump-diffusion 
models have been conducted under different contexts. 
Bates (2006) develops a maximum-likelihood methodol- 
ogy for estimating latent affine processes. Santa-Clara and 
Yan (2010) build a linear-quadratic jump-diffusion model 
and use it to separate diffusion and jump processes. Rela- 
tive to earlier studies, we incorporate rare disaster risk in a 
preference-based model that relates option prices to con- 
sumption rare disaster risk and delivers a simple closed- 
form formula that conforms with data. 

A number of papers have examined the variance 
risk premium and realized volatility. Andersen et al., 
(2003) build a forecasting model of realized volatility us- 
ing intraday data. Bollerslev et al., (2009) study the pre- 
dictability of the aggregate stock return using variance risk 

premia. Londono and Xu (2019) consider the downside and 
upside variance risk premium and their predictive powers 
for international stock returns. Relative to these papers, we 
focus on the disaster component of the volatility or vari- 
ance risk premium. 

The use of far out-of-the-money put option prices to 
infer disaster probabilities was pioneered by Bates (1991) . 
The idea has been applied recently by, among oth- 
ers, Backuset al., (2011) , Bollerslev and Todorov, 2011a , 
2011b ), Ross (2015) , Seo and Wachter (2016) , and 
Siriwardane (2015) . Bollerslev and Todorov (2011b) es- 
timate jump risk using high-frequency data and find 
that compensation for rare events accounts for a large 
fraction of average equity and variance risk premia. 
Backus et al. (2011) find that option implied probabili- 
ties of rare events are smaller than those estimated from 
macroeconomic data. Seo and Wachter (2016) reconcile the 
findings by allowing disaster probability to be stochastic. 
Gabaix (2012) explains a number of asset pricing puzzles 
including high put options prices with rare disaster risk 
by applying linearity-generating processes and incorporat- 
ing time-varying disaster sensitivity. Our approach mod- 
els time-varying disaster probability in a tractable formula 
derived from recursive preferences. One advantage of our 
method is the convenience it provides for estimating dis- 
aster probability using low-frequency options data. Supple- 
menting the model with a rich data set of international eq- 
uity index options, we also contribute to the literature by 
providing time series estimates of disaster probabilities for 
a number of countries. 

The application of our estimated disaster probability 
to forecasting economic growth vulnerabilities echoes the 
work of Adrian et al., (2019) , which relates the conditional 
distribution of GDP growth to a financial conditions index. 
Our study shows that disaster risk, extracted from market 
prices, is an important component of financial conditions 
and determinants of growth vulnerabilities. 

The paper proceeds as follows. Section 2 lays out the 
rare disasters framework. In Section 3 , we work out a for- 
mula for pricing of put options within the disaster set- 
ting. The analysis starts with a constant probability, p , of 
disasters and then introduces possibilities for changing p t . 
Section 4 sets up the empirical framework, describes the 
data and the fit of the model, and discusses the applica- 
tion of the estimated p t to forecasting growth vulnerabili- 
ties. Part 5 concludes. 
2. Rare disaster model and previous results 

We use a familiar setup based on rare macroeconomic 
disasters, as developed in Rietz (1988) and Barro (2006 , 
2009 ). The model is set up for convenience in discrete 
time. Real GDP, Y , is generated from 
l og ( Y t+1 ) = l og ( Y t ) + g + u t+1 + v t+1 , (1) 
where g ≥ 0 is the deterministic part of growth, u t+1 (the 
diffusion term) is an independently and identically dis- 
tributed (i.i.d.) normal shock with mean zero and variance 
σ 2 , and v t+1 (the jump term) is a disaster shock. Disasters 
arise from a Poisson process with probability of occurrence 
p per period. For now, p is taken as constant. We later al- 
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Source: Hilscher, Raviv Reis (2021)

• Model of rare disaster, with Pareto distribution in these tails

• Key are the Pareto parameters



First result: Eurozone and deflation

15

• First adjustment: 
lower it, as deflation 
raises real payofss

• Second adjustment: 
lower it, as deflation 
builds up

• Third adjustment 
lowers it: risk aversion 
as deflation comes 
with recession

EZ

Source: Hilscher, Raviv Reis (2021)
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Second result: US high inflation tail rising

16

• Earlier data clearly 
problematic

• Also clear trend with 
pandemic

• Deflation never so 
high

Source: Hilscher, Raviv, Reis (2021)
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Second result: US high inflation tail rising

17

• Twelve months

• Steady increase in 
hyperinflation

• more recent 
estimates close to 
15%

• May effect

Source: Hilscher, Raviv, Reis (2021)
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2. What do surveys say?

18



Aren’t they always behind the curve?
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Eurozone 2010s
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• More recently, 
arguably inflation 
became anchored at 
1% rather than 2% in 
the EZ over last few 
years

• But surveys show 
almost no change 
throughout…
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Looking at the US anchor

20
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People: Michigan 1 Year
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Look deeper at surveys: 1980s

21

In the 1980s, when the policy regime 
changed, had to look at higher 
moments to see much in the usually-
sluggish surveys data

Source: Mankiw Reis Wolfers (2004)

Figure 12 THE VOLCKER DISINFLATION: THE EVOLUTION OF INFLATION
EXPECTATIONS IN THE MICHIGAN SURVEY
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Figure 13 THE VOLCKER DISINFLATION: THE EVOLUTION OF INFLATION
EXPECTATIONS PREDICTED BY THE STICKY-INFORMATION MODEL
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Look deeper at surveys: 1980s
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Today.know, not just disagreement, but also skewness can be revealing (higher 
moments too hard to estimate unless thousands of respondents)

Source: Reis (2021)

Figure 14: Dropping the anchor: the US 1980s

(a) Actual and survey first-order moments
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is the loss of an inflation anchor, this episode corresponds to dropping of a new anchor,
which persists in place until today. It adds a reversal situation and again tries to measure
the anchor.

Figure 14 shows that the survey of households, which now corresponds to the stan-
dard Michigan quantitative series, was quick to catch on. The decline was swift, keeping
up with inflation. Professional forecasters were slower (or perhaps more skeptical). Dig-
ging deeper into the household cross-sectional distribution, the figure shows that as some
households started expecting lower inflation, this increased the standard deviation, while
it lowered the positive skew. As gradually the remainder households caught up, the me-
dian fell, the standard deviation after reaching a peak started declining, and the skew
started rising. Altogether, this behavior is consistent with the model described in section
4, where people that are inattentive, overconfident, and sticky information in updating
their biases would react in this gradual way to a change in policy regime. As in section 3,
it shows that looking at the distribution of expectations, from first to third moment, can
provide some signals of where the expected inflation anchor is and where it is going.

5.5 United States 2020-21: Where is it heading?

The final application of the ideas in this paper is to undertake an out-of-sample forecast-
ing exercise. The pandemic recession of 2020 and the swift recovery in 2020-21 interrupted
three decades where the expected inflation anchor was steadily at 2% and actual inflation
only had small transitory movements near its anchor. As panel (a) in Figure 15 shows,
inflation fell sharply with the lockdown in the first half of the year, and rebounded very
strongly in the first half of 2021 reaching levels that had not been seen for decades. Many

38



What do they look like in recent past?

23

A little scary

Beyond fundamentals: 
- salience of gas prices 
- backwardness; 
- relatives and absolutes

What about wages?  
- by then, too late 
- recent news are scary

But not too late…
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3. Lessons from history: how the inflation 
anchor was lost in the 1960s

24



Most famous case: the pre Great Inflation

25

1965-68: signs or no signs?
Martin had no use for models, pressured to prioritize 
unemployment.  Sensitive to investor expectations, 
measured with bond rates.  As inflation kept rising, 
increasingly relied on “inflationary psychology”

1968-71:  anchor drifting
As inflation accelerated, Martin, July 1969, “inflationary 
psychology remained the main economic problem” 
Shocks temporary because fleeting beliefs.  Models of 
shifts in Phillips curve, inflation bias.

1971-74: anchor adrift
Burns on wage and price controls “In this new 
psychological environment, our trade unions may not 
push quite so hard for a large increase in wage rates, 
since they would no longer be anticipating a higher 
inflation rate. And in this new psychological environment, 
our business people would not agree to large wage 
increases quite so quickly”  
No measurement, expectations as an add-on factor

Anchor In Seabed A Drifting Anchor
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First Oil
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Unanchored Inflation
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Source: Reis (2021)



Surveys: professionals

26

Both Fed’s staff and 
professional forecasters 
caught up sluggishly

(And the Fed’s staff was 
particularly bullish on view 
that all was temporary)

Behind the curve
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Forgotten data: households
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Since 1946, Michigan Survey of 
Consumer Attitudes asked 
whether expected prices to rise 
or fall. MRW (2004) index.

But also, between 1966Q2 and 
1976Q4, follow up question: 
“How large a price increase do 
you expect? Of course, nobody 
can know for sure, but would you 
say that a year from now prices 
will be about 1% or 2% higher, or 
5% higher, or closer to 10% higher 
than now or what?” 
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Can look deeper: disagreement

28

1967-70: Thickening right tail, hollowing of left tail, standard deviation rising, positive skew falling

1970-73: Median shifted slowly, right tail quickly, standard deviation rose, the skew first up then down
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Markets and the media

29

New data from the Zurich market for gold forwards (alternative to London and Gold pool): very 
responsive, perhaps too much.

In media see some upticks
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A model to combine them into fundamental RE

30

Households: biased from experiences, 
sluggish average, over-react individually

Markets: more information, sensitive 
to news, filled with noise

Professionals: median is misleading, not 
marginal traders.

Data inputs: three moments from 
household survey distribution, one 
market price, median professional

Model outputs: reaction, dispersion 
and bias (𝜃, 𝜎, 𝜆), market noise (𝜔), 
fundamental expected inflation (𝜋e)

<latexit sha1_base64="Xz2Nsh9LJWzj3sDFhuQVgbIv4x8="></latexit>
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Inference or signal extraction problem
Parameters: only two 𝜋* = 2% , and 𝛽 = 2

Inputs: First, second and third moment from people, survey traders, market price
Outputs: fundamental 𝜋et, marginal trader v* , decomposition of discrepancy

31 Source: Reis (2020)



Estimates of the expected inflation anchor
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The drifting anchor

At first, markets 
seen as maybe 
reflecting noise

But, disagreement 
across households 
showed the fund. 
expectation shifting

Later, sluggish 
response of medians 
of professionals 
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Simpler: distributions, ignored at time

33

• Treating expected inflation 
as an exogenous driver…
• …stories of psychology, animal spirits, 

bias towards thinking transitory noise. 
Bad theory.

• Not measuring expectations 
or ignoring data that had
• …disregard surveys as too sluggish 

and biased, markets as noise. 
Persistent refusal to acknowledge 
increase in inflation first 6 months. Still 
saying it is waiting to see uptick in 
inflation expectations. Bad 
measurement.
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Beyond one episode: Brazil 2011-16?
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Loose monetary, fiscal 
dominance, belief all 
transitory, rising inflation.

Price controls over 
administrative prices 
kept it pent-up 2011-15.

Markets, professionals 
weak signals

But again household 
disagreement revealed it

Figure 11: Brazil’s drifting expected inflation anchor: 2011-16

(a) Actual inflation and its target
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(b) Markets and survey first-order moments
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(c) Cross-sectional disagreement of households
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(d) Cross-sectional distribution of households
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and a law giving independence to the Central Bank of the Republic of Turkey (CBRT)
in 2001, a sharp disinflation program lowered it from 49% to 8% in 4 years with little
output costs. In 2006, an inflation targeting regime was adopted, with a target around
5% although with some annual changes. Actual inflation was always above target, but
steadily so, averaging 8% between 2006 and 2017.

Actual inflation. As panel (a) of Figure 12 shows, after 2018 inflation shot up to on aver-
age 15%, three times the inflation target, in the three years between the start of 2018 and
the end of 2020 (Kara, 2021). The precipitating event behind the rise in inflation seems to
have been the re-election of Recep Erdogan in June of 2018. This was a period of political
instability, following a failed coup in July of 2016, a constitutional referendum in April of
2017, and the premature election that should have taken place only in November of 2019.
As the president consolidated his power, but the economy was faltering, he started com-
menting on inflation and interfering with the CBRT’s independence. In May of 2018, in a
campaign speech in London he expressed desire to take greater control of the economy,
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And another episode: Turkey 2018-…

35

Even in real time, cross-sectional survey expectations distributions give signal

If anchor is not firm in the seabed, shifts are large and fast

Figure 12: Turkey’s drifting expected inflation anchor: 2018-...

(a) Actual inflation, markets and survey first-
order moments
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(b) Cross-sectional survey distribution
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Subject to all these caveats, already by the end of 2017, the standard deviation almost
quadrupled, while the skewness went from being negative at -1% to positive at 0.25%.
Panel (b) of Figure 12 shows the distributions in December of 2017, January of 2019 and
June of 2021. In 2017, the uncertainty is evident, with a bimodal distribution and more
than half of the respondents expecting inflation to exceed 17%. The events of 2018 re-
moved some of the disagreement by consolidating a view that inflation would be well
above the target. By 2021, more mass has moved rightwards, and the inflation anchor
seems definitely lost.

Lessons. The Turkish experience of a lost anchor leads to two additional lessons. First,
that even close to real time, and when inflation is bouncing up and down, like it did in
Turkey in 2018 and 2019, the expectations data can paint a clear picture of a lost inflation
anchor. Second, that in countries where arguably the anchor was not firm in the seabed
to start with, the shifts in the cross-sectional distribution can be large and fast. The loss
of the inflation anchor can come fast and need not be gradually building up like it did in
the US in the late 1960s.

5.3 South Africa: 2010-2016

Introduction. The South African Reserve Bank (SARB) adopted inflation targeting in
2000, with a target range of CPI inflation between 3% an 6% and no stated midpoint. The
first few years of of the new regime were rocky, with oscillations in the exchange rate
and reversals of policy, but after 2005, transparency increased, so that after one decade
of inflation targeting, outcomes were on average solidly within the range. The global
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False positives: South Africa 2010-16?
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Survey data stayed steady in light of unlucky run of shocks, price controls temporary effect

No drifting anchor, no false positive

Figure 13: South Africa’s unlucky run: 2010-16

(a) Actual inflation, markets and survey first-
order moments
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(b) Cross-sectional survey distributions
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missed the fall in inflation in 2015 and were slow to catch up to the lower inflation from
2017 onwards.

The bottom panel reproduces instead the cross-sectional distribution among house-
holds at three successive months of October between 2014 and 2016, calculated by Du
Plessis, Reid and Siklos (2021). These come from a remarkable survey conducted by AC
Nielsen under contract with the SARB and the BER of between 2000 and 2500 individuals
in urban and rural environments at a quarterly frequency. As inflation moves up and
down, the distributions shift right and left. However, note that disagreement, measured
by either second or third moments, does not change much.

Lessons. The survey data throughout the 2011-16 period seemed consistent with a stable
anchor. Shocks hit the economy, the central bank justifiably kept monetary policy steady
letting inflation rise, and both outcomes and expectations reflected this with higher ex-
pected inflation. Yet, there was no permanent rise of either actual or expected inflation,
as we saw in the US, Brazil or Turkey. Disagreement did not increase during this period.
Unlike in the US in the 1970s, inflation did not drift up as the expected inflation anchor
remained steady. In the South Africa case, the price controls worked in the opposite di-
rection of what they did in the US and Brazil, yet their effects were qualitatively similar:
significant but temporary.

5.4 The United States in the 1980s: dropping the anchor

Between 1979 and 1973, under chair Paul Volcker, the Fed undertook highly restrictive
monetary policy and inflation fell significantly. If the main episode studied in this paper
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6. Conclusion
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On inflation disasters and economic science

38

• Is an inflation disaster around the corner?

• More likely no, but in the US the tail probability is growing, anchor is moving

• The roots of the Great Inflation were in 1967-73, before oil shocks

• Bad theory (of expectations), bad measurement (expectations), bad luck 
(salience)

• Measurement of expectations

• This conference is a good example of how far we have come, relative to 20 
years ago when this field was almost theory), and policy treating it as an 
add-on factor.


