Does House Price Growth Drive Consumption Growth in the UK?

Orazio Attanasio Andrew Leicester Matthew Wakefield

Institute for Fiscal Studies and University College, London o.attanasio@ucl.ac.uk

Frankfurt - September 4-5 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

House Prices & Consumption

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration

C Growth

C Residuals

Conclusions

Summary Further Work Final Remarks Background

Our Exercise

3 The Model

- Preferences
- Borrowing Constraints
- Stochastic processes
- Summary of Model

4 Model Fit & Counterfact.s

- Calibration
- C Growth
- C Residuals

5 Conclusions

- Summary
- Further Work
- Final Remarks

House Prices & & Consumption

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks

Strong correlation between House Prices and Consumption Growth in UK

Correlation: National Accounts data: 0.75

. Attanasio, Leicst. & Wakefield (IFS/UCL)

House Prices & Consumption

Frankfurt - 4/9/2008

э.

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s

- C Growth
- C Desidual

Conclusions

Summary Further Work Final Remarks

Strong correlation between House Prices and Consumption Growth in UK

Why?

(Muellbauer & Murphy (MM), 1990; King, 1990; Pagano, 1990; Attanasio & Weber (AW), 1994):

- A mechanism from House Prices HP to consumption?
 - Wealth effect
 - Collateral effect
- Or some "Other Factor" as common cause?
 - Income expectations
 - Credit market conditions
 - (Population structure)

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks Difficult to discriminate between these in aggregate data references as above plus:

- Muellbauer and Murphy 1997;
- Campbell & Cocco (CC), 2007;
- Aron, Muellbauer and Murphy, 2007;
- Attanasio, Blow, Hamilton and Leicester, 2007.
- Controlling for other factors (correlated with HP)can be difficult and unconvincing

< 1 →

House Prices & Consumption

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks Greater discriminatory power in micro data:

 Wealth, real estate capital gains and income expectations are likely to have different effects on the consumption of different types of individual

House Prices & Consumption

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks Greater discriminatory power in micro data:

- Wealth, real estate capital gains and income expectations are likely to have different effects on the consumption of different types of individual
- (May also sidestep aggregation issues)

House Prices & Consumption

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Summary

Further Work Final Remarks Greater discriminatory power in micro data:

- Wealth, real estate capital gains and income expectations are likely to have different effects on the consumption of different types of individual
- (May also sidestep aggregation issues)
- To be able to perform reliable exercises it is necessary to have reliable data at the micro level.

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks Greater discriminatory power in micro data:

- Wealth, real estate capital gains and income expectations are likely to have different effects on the consumption of different types of individual
- (May also sidestep aggregation issues)
- To be able to perform reliable exercises it is necessary to have reliable data at the micro level.
- In the UK the Family Expenditure Survey is available on a continuous and consistent basis since the early 1970s

Background

Greater discriminatory power in micro data:

- Wealth, real estate capital gains and income expectations are likely to have different effects on the consumption of different types of individual
- (May also sidestep aggregation issues)
- To be able to perform reliable exercises it is necessary to have reliable data at the micro level.
- In the UK the Family Expenditure Survey is available on a continuous and consistent basis since the early 1970s
- The FES does a pretty good job at reproducing aggregate National Account data

House Prices & & Consumption

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Summary Further Work

Strong correlation between House Prices and Consumption Growth in UK

Correlation: National Accounts data, 0.75 Correlation: FES data, 0.70

Attanasio, Leicst. & Wakefield (IFS/UCL)

House Prices & Consumption

Frankfurt - 4/9/2008

Attanasio, Leicst. & Wakefield

Outline

- Background
- Our Exercise
- The Model Preferences Borrowing Constraints Stochastic processes Summary of Model
- Model Fit & Counterfact.s Calibration C Growth C Residuals
- Conclusions
- Summary Further Work Final Remarks

- Intuition: the effect of capital gains and expected future earnings should be different for individuals of different ages.
 - Attanasio and Weber (1994) and Attanasio, Blow, Hamilton and Leicester (2007)

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks

- Intuition: the effect of capital gains and expected future earnings should be different for individuals of different ages.
 - Attanasio and Weber (1994) and Attanasio, Blow, Hamilton and Leicester (2007)
- Older hhs respond to shocks to housing wealth
- Younger hhs more scope to enjoy increases to future income

< 17 ▶

House Prices & Consumption

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks

Fig. 7. Estimated profile of consumption, excluding expenditure on housing, controlling for occupation, region and months.

Background Evidence from the FES: Attanasio and Weber

Economic Journal 1994.

House Prices & Consumption

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth

Conclusions

Summary Further Work Final Remarks

Fig. 15. Age consumption profiles of various cohorts around the shock.

House Prices & & Consumption

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth

C Residuals

Conclusions

Summary Further Work Final Remarks

Attanasio, Blow, Hamilton and Leicester Economica, forthcoming .

Chart 4: House price growth and real consumption growth of different age groups

Sources: FES/EFS, Communities and Local Government, ONS, and authors' calculations.

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

I he Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks

However in life-cycle model with housing & associated credit constraints it is difficult to be sure of intuitions

• see Attanasio and Weber (1994)

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks

- However in life-cycle model with housing & associated credit constraints it is difficult to be sure of intuitions
 - see Attanasio and Weber (1994)
- Our aim is to fill modelling gap:
 - Does a realistic model confirm intuitions?
 - Can model be used to draw quantitative conclusions?

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks

- However in life-cycle model with housing & associated credit constraints it is difficult to be sure of intuitions
 - see Attanasio and Weber (1994)
- Our aim is to fill modelling gap:
 - Does a realistic model confirm intuitions?
 - Can model be used to draw quantitative conclusions?
- Not an equilibrium model

Our Exercise

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Summary Further Work Final Remarks

• Construct a life-cycle model to capture housing and consumption choices in a plausible way

- ∢ ⊒ →

House Prices & Consumption

Our Exercise

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Summary Further Work

• Construct a life-cycle model to capture housing and consumption choices in a plausible way

• Match model to data on U.K. economy

House Prices & Consumption

Our Exercise

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks

- Construct a life-cycle model to capture housing and consumption choices in a plausible way
- Match model to data on U.K. economy
 - Simulate a series of cohorts constructed to resemble UK cohorts 1910s 1970s.
 - Input actual house price and income shocks only aggregate shocks

House Prices & Consumption

Our Exercise

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks

- Construct a life-cycle model to capture housing and consumption choices in a plausible way
- Match model to data on U.K. economy
 - Simulate a series of cohorts constructed to resemble UK cohorts 1910s 1970s.
 - Input actual house price and income shocks only aggregate shocks
- See how the model matches consumption growth and cons patterns across groups

House Prices & Consumption

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration

C Residuals

Conclusions

Summary Further Work Final Remarks

- Construct a life-cycle model to capture housing and consumption choices in a plausible way
- Match model to data on U.K. economy
 - Simulate a series of cohorts constructed to resemble UK cohorts 1910s 1970s.
 - Input actual house price and income shocks only aggregate shocks
- See how the model matches consumption growth and cons patterns across groups
- Counterfactuals

Our Exercise

- Examine counterfactuals to disentangle role of house prices and aggregate income shocks
 - Counterfactual in income and HP shocks
 - Look at effects on different modelled cohorts

Attanasio, Leicst. & Wakefield (IFS/UCL)

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks

Our Exercise

Factors not emphasized here:

- Life cycle profiles:
 - Consumption
 - Home ownership

э.

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration

- C Growth
- C Residuals

Conclusions

Summary Further Work Final Remarks

Our Exercise

Factors not emphasized here:

- Life cycle profiles:
 - Consumption
 - Home ownership
- Comparative Statics: elasticity of consumption, ownership, quantity of housing to:
 - changes in house prices
 - changes in life time income
 - changes in uncertainty and other factors.

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model

Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth

C Residuals

Conclusions

Summary Further Work Final Remarks

A Life Cycle Model of Consumption and Housing Choices

- Preferences
- Market Structure
- Exogenous Stochastic Processes
 - Earnings and House prices

< ∃ →

The Model	Preferences
-----------	-------------

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks Standard lifecycle consumption/savings model

• Augmented with (discrete) choice of whether to own flat, house, or no housing (costless rental)

Attanasio Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks Standard lifecycle consumption/savings model

• Augmented with (discrete) choice of whether to own flat, house, or no housing (costless rental)

• Consider the value function

$$V_{t}(A_{t}, h_{t-1}, P_{t}, Y_{t}, Z_{t}) = \max_{\{c_{t}, h_{t}\}} u(c_{t}, h_{t}) +$$

$$\beta EV_{t+1}(A_{t+1}, h_t, P_{t+1}, Y_{t+1}, Z_{t+1})$$

subject to

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration

C Residuals

Conclusions

Summary Further Work Final Remarks Standard lifecycle consumption/savings model

• Augmented with (discrete) choice of whether to own flat, house, or no housing (costless rental)

• Consider the value function

$$V_t(A_t, h_{t-1}, P_t, Y_t, Z_t) = \max_{\{c_t, h_t\}} u(c_t, h_t) +$$

$$\beta EV_{t+1}(A_{t+1}, h_t, P_{t+1}, Y_{t+1}, Z_{t+1})$$

subject to (if flat is owned)

 $egin{aligned} & A_{t+1} = \ & R_{t+1}(A_t + W_t - c_t + \kappa P_t(1 - F)I(h_t
eq 1) - P_t(1 + F)I(h_t = 2)) \end{aligned}$

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions Summary Further Work Final Remarks Standard lifecycle consumption/savings model

- Augmented with (discrete) choice of whether to own flat, house, or no housing (costless rental)
- Consider the value function

$$V_{t}(A_{t}, h_{t-1}, P_{t}, Y_{t}, Z_{t}) = \max_{\{c_{t}, h_{t}\}} u(c_{t}, h_{t}) +$$

$$\beta EV_{t+1}(A_{t+1}, h_t, P_{t+1}, Y_{t+1}, Z_{t+1})$$

subject to (if flat is owned)

 $A_{t+1} =$

 $R_{t+1}(A_t + W_t - c_t + \kappa P_t(1 - F)I(h_t \neq 1) - P_t(1 + F)I(h_t = 2))$

- Individuals are heterogeneous in their skill level
- Low education (compulsory school only)
- High education (more than compulsory education)

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks Within period utility function is CRRA, augmented by a term reflecting the value of home ownership:

$$u(c_t, h_t) = \exp(\theta \phi(h_t)) \frac{c_t^{1-\gamma}}{1-\gamma}$$

Attanasio, Leicst. & Wakefield (IFS/UCL)

- ∢ ≣ →

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks Within period utility function is CRRA, augmented by a term reflecting the value of home ownership:

$$u(c_t, h_t) = \exp(\theta \phi(h_t)) \frac{c_t^{1-\gamma}}{1-\gamma}$$

Agents also derive utility from leaving a bequest:

$$b(A_T) = \psi * rac{(A_T/\psi)^{1-\gamma}}{1-\gamma}$$

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.: Calibration C Growth C Residuals

Conclusions Summary Further Work Final Remarks Within period utility function is CRRA, augmented by a term reflecting the value of home ownership:

$$u(c_t, h_t) = \exp(\theta \phi(h_t)) \frac{c_t^{1-\gamma}}{1-\gamma}$$

Agents also derive utility from leaving a bequest:

$$b(A_T) = \psi * rac{(A_T/\psi)^{1-\gamma}}{1-\gamma}$$

Value of $\gamma = 1.43$ taken from literature; θ , $\phi \& \psi$ calibrated through moments exercise.

17 / 33

< □ > < / P >

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks Only collateralized debt. When buy or remortgage:

$$A_{t+1} \geq -\lambda_h P_t(1+r)$$

The value $(1 - \lambda_h)$ is downpayment requirement.

$$egin{aligned} \mathcal{A}_{t+1} \geq -\lambda_w \, \mathcal{W}_t(1+r) \ \lambda_h = 0.9 \, \& \, \lambda_w = 3 \end{aligned}$$

When do not remortgage, must service interest

18 / 33

< □ > < / P >

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Summary Further Work Final Remarks Income arrives exogenously; process which generates it (lower case for logs):

$$w_t = d_t + y_t + z_t$$

 d_t is a deterministic part (Cubic)

 y_t is persistent idiosyncratic stochastic element (AR(1)); both parameterized using data from BHPS

 z_t is aggregate stochastic component, modelled jointly with HP (interest rate considered fixed):

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Summary Further Work Final Remarks Income arrives exogenously; process which generates it (lower case for logs):

$$w_t = d_t + y_t + z_t$$

 d_t is a deterministic part (Cubic)

 y_t is persistent idiosyncratic stochastic element (AR(1)); both parameterized using data from BHPS

 z_t is aggregate stochastic component, modelled jointly with HP (interest rate considered fixed):

$$\begin{bmatrix} z_t \\ p_t \end{bmatrix} = \begin{bmatrix} \alpha_0^z \\ \alpha_0^h \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z_{t-1} \\ p_{t-1} \end{bmatrix} + \begin{bmatrix} u_t^z \\ u_t^h \end{bmatrix}$$

- Unit persistence suggested by data (FES & DCLG)
- Growth rates $\alpha_0^z = 1.66\%$, $\alpha_0^h = 3.58\%$
- Shocks joint normal $(\underline{u}_t \sim \mathbb{N}(0, \underline{\Omega}))$:
 - Variance shock to HP about 2.75 times variance of shock to aggregate income
 - Correlation coefficient 0.645

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Summary Further Work Final Remarks Income arrives exogenously; process which generates it (lower case for logs):

$$w_t = d_t + y_t + z_t$$

 d_t is a deterministic part (Cubic)

 y_t is persistent idiosyncratic stochastic element (AR(1)); both parameterized using data from BHPS

 z_t is aggregate stochastic component, modelled jointly with HP (interest rate considered fixed):

$$\begin{bmatrix} z_t \\ p_t \end{bmatrix} = \begin{bmatrix} \alpha_0^z \\ \alpha_0^h \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z_{t-1} \\ p_{t-1} \end{bmatrix} + \begin{bmatrix} u_t^z \\ u_t^h \end{bmatrix}$$

- Unit persistence suggested by data (FES & DCLG)
- Growth rates $\alpha_0^z = 1.66\%$, $\alpha_0^h = 3.58\%$
- Shocks joint normal $(\underline{u}_t \sim \mathbb{N}(0, \underline{\Omega}))$:
 - Variance shock to HP about 2.75 times variance of shock to aggregate income
 - Correlation coefficient 0.645
- Shocks entered in simulations from data

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Summary Further Work Final Remarks Standard lifecycle consumption/savings model augmented with choice of whether to own flat, house, or no housing

- Bequests
- Realistic mortgage borrowing constraints
- Fixed costs of housing transactions
- Persistent stochastic process for idiosyncratic income
- Unit persistent joint process for aggregate income and house price
 - Input actual shocks for cohorts in simulations

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes

Model Fit &

Calibration

C Growth

C Residuals

Conclusions

Summary Further Work Final Remarks

Parameter	Value		Source					
Utility Parameters								
γ	1.43		(Attanasio and Weber, 1995)					
β	1.0358^{-1}							
Aggregate House Price and Income Process								
α_0^z	1.66%		FES					
σ_z	0.033		FES					
α_0^h	3.58%		DCLG					
σ_h	0.091		DCLG					
au	0.645		FES / DCLG					
κ	0.6		BHPS					
Idiosyncratic Income Process								
Deterministic	nistic component: cubic in age		BHPS					
High Edu Low edu								
ρ_{y}	0.76	0.77	BHPS					
σ_{ξ}	0.39	0.41	BHPS					
MedianP ₂₂ MedianY ₂₂	3.3	4.4	BHPS					
Credit market Institutions								
λ_y	3.0							
λ_h	0.9							
F	3%	6						
ī	0.03		B.o.E.					

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s

Calibration

C Growth

Conclusions

Summary Further Work Final Remarks

Calibration to Home Ownership

Match ownership profiles for low and high education Calibrated parameters are:

- Utility from owning house: 1.5%
- Utility from flat relative to house: 2/3
- Bequest parameter 4

Calibration

Calibration to Home Ownership

Match ownership profiles for low and high education Calibrated parameters are:

- Utility from owning house: 1.5%
- Utility from flat relative to house: 2/3
- Bequest parameter 4 •

These parameters yield:

Table: Calibration Statistics

	High E	ducation	Low Education		
Statistic	Data	Model	Data	Model	
Ownership rate					
Age 26 - 35	0.558	0.584	0.474	0.423	
Age 36 - 60	0.794	0.822	0.632	0.681	

Notes: The data figures for home-ownership rates are based on the years

1990-2006 of the FES.

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks

Fit to Consumption Growth

Have fed in actual shocks to HP and agg. income

> Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks

Decomposition of consumption growth

Attanasio, Leicst. & Wakefield (IFS/UCL)

Frankfurt - 4/9/2008

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions Summary Further Work

Residuals from consumption equation, by age

- Regress In Cons on:
 - Quintic in age of head of household; Cohort dummies; Occupation dummies; Region & Month dummies; Controls for family composition; Education attainment dummies.
- Take residuals
- Average these residuals by year and age group
- Do this for data and model

> Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks

Residuals from consumption equation: Data

Attanasio, Leicst. & Wakefield (IFS/UCL)

Frankfurt - 4/9/2008

> Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks

Residuals from consumption equation: Model

> Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks

Residuals from consumption equation: HP shocks only

Attanasio, Leicst. & Wakefield (IFS/UCL)

Frankfurt - 4/9/2008

э.

> Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks

Residuals from consumption equation: Income shocks

Attanasio, Leicst. & Wakefield (IFS/UCL)

Frankfurt - 4/9/2008

Summary

 Potential of framework to provide foundations for tests based on intuitions and (more) stylised lifecycle model

• It seems that looking at age-groups is a good approach

Summary

 Potential of framework to provide foundations for tests based on intuitions and (more) stylised lifecycle model

• It seems that looking at age-groups is a good approach

Remarkable match to consumption growth

Summary

- Potential of framework to provide foundations for tests based on intuitions and (more) stylised lifecycle model
 - It seems that looking at age-groups is a good approach
- Remarkable match to consumption growth
- Possibility of doing counter-factual analysis

Summary

- Potential of framework to provide foundations for tests based on intuitions and (more) stylised lifecycle model
 - It seems that looking at age-groups is a good approach
- Remarkable match to consumption growth
- Possibility of doing counter-factual analysis
- First step towards equilibrium model

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Further Work Final Remarks • Why such high volatility for old, particularly to HP growth?

31 / 33

<ロ> <同> <同> <同> < 三> < 三>

Further Work

• Why such high volatility for old, particularly to HP growth?

• Empirical Q: Is common agg. income shock too restrictive - should it be a cohort shock?

-∢ ≣ →

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks

- Why such high volatility for old, particularly to HP growth?
- Empirical Q: Is common agg. income shock too restrictive should it be a cohort shock?
- Sensitivity to parameters
 - Preference parameters / bequest function
 - Institutional constraints

31 / 33

< 1 →

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions

Summary Further Work Final Remarks

- Why such high volatility for old, particularly to HP growth?
- Empirical Q: Is common agg. income shock too restrictive should it be a cohort shock?
- Sensitivity to parameters
 - Preference parameters / bequest function
 - Institutional constraints
- Other exercises
 - Isolate role as collateral
 - Different counterfactuals

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth

C Residuals

Conclusions

Further Work

- Why such high volatility for old, particularly to HP growth?
- Empirical Q: Is common agg. income shock too restrictive should it be a cohort shock?
- Sensitivity to parameters
 - Preference parameters / bequest function
 - Institutional constraints
- Other exercises
 - Isolate role as collateral
 - Different counterfactuals
- Progress to Equilibrium Model

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Summary Further Work Final Remarks • This work has been possible because of high quality data at the micro level

32 / 33

<ロ> <同> <同> <同> < 三> < 三>

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Summary Further Work Final Remarks

- This work has been possible because of high quality data at the micro level
- Although the UK has the FES, additional data are surely needed:

< ∃ →

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Vlodel Fit & Counterfact.s Calibration C Growth C Residuals

Summary Further Work Final Remarks

- This work has been possible because of high quality data at the micro level
- Although the UK has the FES, additional data are surely needed:
 - Longitudinal dimension

< ∃ →

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals Conclusions

Summary Further Work Final Remarks

- This work has been possible because of high quality data at the micro level
- Although the UK has the FES, additional data are surely needed:
 - Longitudinal dimension
 - Wealth data (including pension rights)

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Summary Further Work Final Remarks

- This work has been possible because of high quality data at the micro level
- Although the UK has the FES, additional data are surely needed:
 - Longitudinal dimension
 - Wealth data (including pension rights)
 - Additional dimensions (expectations, preferences, perceptions)
- Much progress has been made in the collection of data

Attanasio, Leicst. & Wakefield

Outline

Background

Our Exercise

The Model Preferences Borrowing Constraints Stochastic processes Summary of Model

Model Fit & Counterfact.s Calibration C Growth C Residuals

Conclusions Summary Further Work Final Remarks

- This work has been possible because of high quality data at the micro level
- Although the UK has the FES, additional data are surely needed:
 - Longitudinal dimension
 - Wealth data (including pension rights)
 - Additional dimensions (expectations, preferences, perceptions)
- Much progress has been made in the collection of data
- Much remains to be done

Does House Price Growth Drive Consumption Growth in the UK?

Orazio Attanasio Andrew Leicester Matthew Wakefield

Institute for Fiscal Studies and University College, London o.attanasio@ucl.ac.uk

Frankfurt - September 4-5 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで